Investigation of nonlinear dynamics in the stochastic nonlinear Schrödinger equation with spatial noise intensity

被引:1
作者
Shakeel, Muhammad [1 ]
Liu, Xinge [1 ]
Abbas, Naseem [2 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
[2] Quaid I Azam Univ, Dept Math, Islamabad 45320, Pakistan
基金
中国国家自然科学基金;
关键词
Stochastic nonlinear Schr & ouml; dinger equation; Multi soliton; (G; G; 1G)-expansion method; Generalized Kudryashov method; Dynamical analysis; Optical soliton; SCHRODINGER-EQUATION; WAVE SOLUTIONS;
D O I
10.1007/s11071-024-10757-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This study investigates the stochastic non-linear Schr & ouml;dinger equation (SNLSE) with spatialnoise intensity. Exact solutions, including trigonomet-ric, rational, hyperbolic, periodic, dark, kink, anti-kink, and exponential forms, are achieved by uti-lizing the logarithmic transformation, the(G ' G,1G)-expansion method, and the generalized Kudryashovmethod(gKM).Thesesolutionsareimportantforappli-cations in nonlinear optical fibers, signal processing,communication, and engineering sciences. The effectsof multiplicative noise on these solutions are analyzedthrough 3D, and contour visualizations by utilizingMathematica 11. Moreover, the nonlinear dynamicsof the system are analyzed by using phase portraitswithin bifurcation theory, describing chaotic behaviorinduced by external forces. Chaotic trajectories are fur-ther identified using 2D and 3D plots, time series anal-ysis, and Lyapunov exponents. The model's sensitivityunder varying initial conditions is also examined
引用
收藏
页码:8951 / 8971
页数:21
相关论文
共 32 条
  • [11] The Schrodinger equation with spatial white noise potential
    Debussche, Arnaud
    Weber, Hendrik
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [12] Dey P., 2024, Arab J. Basic Appl. Sci, V31, P121
  • [13] Durmus SA, 2024, OPT QUANT ELECTRON, V56, DOI [10.1007/s11082-024-06493-6, 10.1007/s11082-024-06413-8]
  • [14] Gepreel KA., 2017, Journal of the Egyptian Mathematical Society, V25, P438
  • [15] Hussain S, 2023, OPT QUANT ELECTRON, V55, DOI 10.1007/s11082-023-04851-4
  • [16] New soliton solutions of the mZK equation and the Gerdjikov-Ivanov equation by employing the double (G?/G,1/G)-expansion method
    Iqbal, M. Ashik
    Baleanu, Dumitru
    Miah, M. Mamun
    Ali, H. M. Shahadat
    Alshehri, Hashim M.
    Osman, M. S.
    [J]. RESULTS IN PHYSICS, 2023, 47
  • [17] Exploring novel optical soliton solutions for the stochastic chiral nonlinear Schrodinger equation: Stability analysis and impact of parameters
    Islam, S. M. Rayhanul
    Arafat, S. M. Yiasir
    Inc, Mustafa
    [J]. JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2025, 34 (05)
  • [18] Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations
    Liu, SK
    Fu, ZT
    Liu, SD
    Zhao, Q
    [J]. PHYSICS LETTERS A, 2001, 289 (1-2) : 69 - 74
  • [19] New optical solitons for perturbed stochastic nonlinear Schrodinger equation by functional variable method
    Mohamed, E. M.
    El-Kalla, I. L.
    Tarabia, A. M. K.
    Kader, A. H. Abdel
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (07)
  • [20] Onder I., 2023, OPTICAL SOLITON SOLU