Parabolic logistic equation with harvesting involving the fractional Laplacian

被引:0
作者
Chhetri, Maya [1 ]
Girg, Petr [2 ,3 ]
Hollifield, Elliott [4 ]
Kotrla, Lukas [2 ,3 ]
机构
[1] Univ North Carolina Greensboro, Dept Math & Stat, Greensboro, NC 27402 USA
[2] Univ West Bohemia, Fac Appl Sci, Dept Math, Univ 8, CZ-30100 Plzen, Czech Republic
[3] Univ West Bohemia, Fac Appl Sci, NTIS, Univ 8, CZ-30100 Plzen, Czech Republic
[4] Univ North Carolina Pembroke, Dept Math & Comp Sci, Pembroke, NC 28372 USA
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2024年 / 31卷 / 06期
关键词
Fractional Laplacian; Parabolic; Logistic; Harvesting; Sub- and supersolution; POPULATION; REGULARITY; EXISTENCE;
D O I
10.1007/s00030-024-00992-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a class of parabolic reaction-diffusion equations driven by the fractional Laplacian as the diffusion operator over a bounded domain with zero Dirichlet external condition. Using a comparison principle and monotone iteration method, we establish existence and uniqueness results. We apply the existence result to the logistic growth problems with constant yield harvesting by constructing an ordered pair of positive sub- and supersolution of the corresponding elliptic problem.
引用
收藏
页数:25
相关论文
共 50 条
[21]   On the superlinear problems involving the fractional Laplacian [J].
Ge, Bin ;
Zhang, Chao .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2016, 110 (02) :343-355
[22]   On parabolic problems involving fractional p-Laplacian via topological degree [J].
Talibi, Ihya ;
Taqbibt, Abdellah ;
El Boukari, Brahim ;
El Ghordaf, Jalila ;
El Omari, M'hamed .
FILOMAT, 2024, 38 (20) :7173-7181
[23]   MULTIPLE SOLUTIONS FOR DIRICHLET NONLINEAR BVPS INVOLVING FRACTIONAL LAPLACIAN [J].
Kulczycki, Tadeusz ;
Stanczy, Robert .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (08) :2581-2591
[24]   Symmetry and Monotonicity of a Nonlinear Schrödinger Equation Involving the Fractional Laplacian [J].
Li Yuan ;
Ping Li .
Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 :4109-4125
[25]   A priori estimates of solutions to nonlinear fractional Laplacian equation [J].
Zhang, Tao ;
Cheng, Tingzhi .
ELECTRONIC RESEARCH ARCHIVE, 2022, 31 (02) :1119-1133
[26]   Elliptic problems involving the fractional Laplacian in RN [J].
Autuori, Giuseppina ;
Pucci, Patrizia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) :2340-2362
[27]   ON A VISCOELASTIC KIRCHHOFF EQUATION WITH FRACTIONAL LAPLACIAN [J].
Liu, Yang ;
Zhang, Li .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (08) :2543-2565
[28]   Radial symmetry and Hopf lemma for fully nonlinear parabolic equations involving the fractional Laplacian [J].
Miaomiao Cai ;
Fengquan Li ;
Pengyan Wang .
Fractional Calculus and Applied Analysis, 2022, 25 :1037-1054
[29]   Solvability of parabolic variational-hemivariational inequalities involving space-fractional Laplacian [J].
Migorski, Stanislaw ;
Van Thien Nguyen ;
Zeng, Shengda .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 364
[30]   Doob's ω-transform of parabolic problem for fractional Laplacian [J].
Bezzarga, Mounir ;
Kenzizi, Tarek ;
Nefzi, Chaima .
APPLICABLE ANALYSIS, 2023, 102 (03) :770-781