Revitalizing interphase in all-solid-state Li metal batteries by electrophile reduction

被引:11
作者
Zhang, Weiran [1 ,2 ]
Wang, Zeyi [2 ]
Wan, Hongli [2 ]
Li, Ai-Min [2 ]
Liu, Yijie [2 ]
Liou, Sz-Chian [3 ]
Zhang, Kai [4 ]
Ren, Yuxun [2 ]
Jayawardana, Chamithri [5 ]
Lucht, Brett L. [5 ]
Wang, Chunsheng [1 ,2 ]
机构
[1] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD USA
[4] Univ Zurich, Dept Chem, Zurich, Switzerland
[5] Univ Rhode Isl, Dept Chem, Kingston, RI USA
关键词
LITHIUM METAL; ELECTROLYTES; CONDUCTIVITY; STABILITY; ORIGIN; LIPON;
D O I
10.1038/s41563-024-02064-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
All-solid-state lithium metal batteries promise high levels of safety and energy density, but their practical realization is limited by low Li reversibility, limited cell loading and demand for high-temperature and high-pressure operation, stemming from solid-state electrolyte (SSE) low-voltage reduction and high-voltage decomposition, and from lithium dendrite growth. Here we concurrently address these challenges by reporting that a family of reductive electrophiles gain electrons and cations from metal-nucleophile materials (here a Li sulfide SSE) upon contact to undergo electrochemical reduction and form interphase layers (named solid reductive-electrophile interphase) on material surfaces. The solid reductive-electrophile interphase is electron blocking and lithiophobic, prevents SSE reduction, suppresses Li dendrites and supports high-voltage cathodes. Consequently, a reductive-electrophile-treated SSE exhibits high critical capacity and Li reversibility at the anode, and enables Li(1% Mg)/SSE/LiNi0.8Co0.15Al0.05O2 all-solid-state lithium metal batteries to achieve a high coulombic efficiency (>99.9%), long cycle life (similar to 10,000 h) and high loading (>7 mAh cm(-2)) at 30 degrees C and 2.5 MPa. This concept also extends to cathodes of other materials (for example, metal oxides), boosting the high-nickel cathode's cycle life and expanding the operational voltage up to 4.5 V. Such solid reductive-electrophile interphase tailoring of material surfaces holds promise to accelerate all-solid-state lithium metal battery commercialization and offer solutions for a wide range of materials.
引用
收藏
页码:414 / 423
页数:12
相关论文
共 56 条
[1]   Synthesis of Fluorine-Doped Lithium Argyrodite Solid Electrolytes for Solid-State Lithium Metal Batteries [J].
Arnold, William ;
Shreyas, Varun ;
Li, Yang ;
Koralalage, Milinda Kalutara ;
Jasinski, Jacek B. ;
Thapa, Arjun ;
Sumanasekera, Gamini ;
Ngo, Anh T. ;
Narayanan, Badri ;
Wang, Hui .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (09) :11483-11492
[2]   Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes [J].
Banerjee, Abhik ;
Wang, Xuefeng ;
Fang, Chengcheng ;
Wu, Erik A. ;
Meng, Ying Shirley .
CHEMICAL REVIEWS, 2020, 120 (14) :6878-6933
[3]   Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization [J].
Cao, Xia ;
Ren, Xiaodi ;
Zou, Lianfeng ;
Engelhard, Mark H. ;
Huang, William ;
Wang, Hansen ;
Matthews, Bethany E. ;
Lee, Hongkyung ;
Niu, Chaojiang ;
Arey, Bruce W. ;
Cui, Yi ;
Wang, Chongmin ;
Xiao, Jie ;
Liu, Jun ;
Xu, Wu ;
Zhang, Ji-Guang .
NATURE ENERGY, 2019, 4 (09) :796-805
[4]   Electrochemical Biosensor for DNA Methylation Detection through Hybridization Chain-Amplified Reaction Coupled with a Tetrahedral DNA Nanostructure [J].
Chen, Xi ;
Huang, Jian ;
Zhang, Shu ;
Mo, Fei ;
Su, Shasha ;
Li, Yan ;
Fang, Lichao ;
Deng, Jun ;
Huang, Hui ;
Luo, Zhaoxun ;
Zheng, Junsong .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (04) :3745-3752
[5]   Origin of dendrite-free lithium deposition in concentrated electrolytes [J].
Chen, Yawei ;
Li, Menghao ;
Liu, Yue ;
Jie, Yulin ;
Li, Wanxia ;
Huang, Fanyang ;
Li, Xinpeng ;
He, Zixu ;
Ren, Xiaodi ;
Chen, Yunhua ;
Meng, Xianhui ;
Cheng, Tao ;
Gu, Meng ;
Jiao, Shuhong ;
Cao, Ruiguo .
NATURE COMMUNICATIONS, 2023, 14 (01)
[6]   Unveiling the Stable Nature of the Solid Electrolyte Interphase between Lithium Metal and LiPON via Cryogenic Electron Microscopy [J].
Cheng, Diyi ;
Wynn, Thomas A. ;
Wang, Xuefeng ;
Wang, Shen ;
Zhang, Minghao ;
Shimizu, Ryosuke ;
Bai, Shuang ;
Nguyen, Han ;
Fang, Chengcheng ;
Kim, Min-cheol ;
Li, Weikang ;
Lu, Bingyu ;
Kim, Suk Jun ;
Meng, Ying Shirley .
JOULE, 2020, 4 (11) :2484-2500
[7]   Highly Reversible Lithium Host Materials for High-Energy-Density Anode-Free Lithium Metal Batteries [J].
Cho, Sungjin ;
Kim, Dong Yeon ;
Lee, Jung-In ;
Kang, Jisu ;
Lee, Hyeongseok ;
Kim, Gahyun ;
Seo, Dong-Hwa ;
Park, Soojin .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (47)
[8]   In Situ Formed Ag-Li Intermetallic Layer for Stable Cycling of All-Solid-State Lithium Batteries [J].
Choi, Hong Jun ;
Kang, Dong Woo ;
Park, Jun-Woo ;
Park, Jun-Ho ;
Lee, Yoo-Jin ;
Ha, Yoon-Cheol ;
Lee, Sang-Min ;
Yoon, Seog Young ;
Kim, Byung Gon .
ADVANCED SCIENCE, 2022, 9 (01)
[9]   Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures [J].
Cölfen, H ;
Mann, S .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (21) :2350-2365
[10]  
EGERTON RF, 1986, ELECT ENERGY LOSS SP