Generating Osmotic Power Using Waste Effluents for Pressure-Retarded Osmosis

被引:0
|
作者
AL-Musawi, Osamah A. H. [1 ]
Mohammad, Abdul Wahab [2 ]
Mahood, Hameed B. [3 ,4 ]
Ang, Wei Lun [1 ]
Mahmoudi, Ebrahim [1 ]
Kadhum, Abdul Amir H. [5 ]
机构
[1] Univ Kebangsaan Malaysia, Dept Chem & Proc Engn, Bangi, Malaysia
[2] Univ Sharjah, Coll Engn, Chem & Water Desalinat Engn Program, Sharjah, U Arab Emirates
[3] Univ Birmingham, Ctr Sustainable Cooling, Sch Chem Engn, Birmingham B15 2TT, England
[4] Univ Warith Al Anbiyaa, Coll Engn, Karbala 56001, Iraq
[5] Univ Al Ameed, Karbala, Iraq
关键词
Pressure-retarded osmosis; Renewable energy; Spiral-wound membrane; Wastewater; SPIRAL WOUND MODULE; MEMBRANE PROCESSES; SALINITY GRADIENT; REVERSE-OSMOSIS; FLUX BEHAVIOR; PERFORMANCE; ENERGY; DESALINATION; WATER; FO;
D O I
10.1007/s13369-024-09751-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pressure-retarded osmosis (PRO) has a chemical potential to generate sustainable energy by utilising a semi-permeable membrane. RO-brine management with effluents being disposed of and energy usage are two issues that RO systems and deionised units face. The energy generation using the PRO techniques is proposed to address both of these issues practically. PRO can be used and integrated with the configuration of RO-brine as draw solution (DS) and effluent from demineralisation unit as feed solution (FS) that may generate the osmotic power density when it is applied. In this study, osmotic pressure for DS and FS was computed experimentally to predict W-p of the PRO, and the performance of the PRO process was evaluated using various scenarios, which included the spatial process parameters of applied pressure, concentrations and flow rates for DS and FS. In this approach, the effluent solutions could serve as an inflow source. Additionally, there is no need for pre-treatment of the DS and FS, as is required in the common PRO system. Experiments were conducted to estimate the transport properties of commercial SW-membranes. Based on these experimental scenarios, trials were conducted using three DS of NaCl concentrations of similar to 51.8, 44.1, and 36.2 g/L to investigate the viability of the PRO, where the largest W-p reached 2.83, 2.32, and 1.94 W/m(2), while the smallest W-p was 1.5,1.18, and 1.0 W/m(2), and the flux reversal point of the Delta(pPRO) was similar to 10.8 bar and 9.4 bar, corresponding to the different flow rates. Additionally, the effects of dilution on the system were also observed.
引用
收藏
页码:4295 / 4311
页数:17
相关论文
共 50 条
  • [31] Experimental study of the potential of concentrated NaCl solutions for use in pressure-retarded osmosis process
    Dietrich, Fabian
    Cieslikiewicz, Lukasz
    Furmanski, Piotr
    Lapka, Piotr
    ARCHIVES OF THERMODYNAMICS, 2024, 45 (01) : 137 - 143
  • [32] Impact of temperature on power recovery in osmotic power production by pressure retarded osmosis
    Touati, Khaled
    Tadeo, Fernando
    Schiestel, Thomas
    TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY (TMREES14 - EUMISD), 2014, 50 : 960 - 969
  • [33] Does Pressure-Retarded Osmosis Help Reverse Osmosis in Desalination?
    Parra, Abdon
    Noriega, Mario
    Yokoyama, Lidia
    Bagajewicz, Miguel
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (11) : 4366 - 4374
  • [34] Impaired Performance of Pressure-Retarded Osmosis due to Irreversible Biofouling
    Bar-Zeev, Edo
    Perreault, Francois
    Straub, Anthony P.
    Elimelech, Menachem
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (21) : 13050 - 13058
  • [35] Effects of reverse solute diffusion on membrane biofouling in pressure-retarded osmosis processes
    Sun, Peng-Fei
    Jang, Yongsun
    Ham, So-Young
    Ryoo, HwaSoo
    Park, Hee-Deung
    DESALINATION, 2021, 512
  • [36] An Updated Model Using a Reflection Coefficient for Predicting Performance of Pressure-Retarded Osmosis
    AL-Musawi, Osamah A. H.
    Mohammad, Abdul Wahab
    Ang, Wei Lun
    Mahood, Hameed B.
    Kadhum, Abdul Amir H.
    JURNAL KEJURUTERAAN, 2024, 36 (01): : 95 - 112
  • [37] Overview of pressure-retarded osmosis (PRO) process and hybrid application to sea water reverse osmosis process
    Kim, Jihye
    Lee, Jijung
    Kim, Joon Ha
    DESALINATION AND WATER TREATMENT, 2012, 43 (1-3) : 193 - 200
  • [38] Progress in pressure retarded osmosis (PRO) membranes for osmotic power generation
    Han, Gang
    Zhang, Sui
    Li, Xue
    Chung, Tai-Shung
    PROGRESS IN POLYMER SCIENCE, 2015, 51 : 1 - 27
  • [39] Osmotic power with Pressure Retarded Osmosis: Theory, performance and trends - A review
    Helfer, Fernanda
    Lemckert, Charles
    Anissimov, Yuri G.
    JOURNAL OF MEMBRANE SCIENCE, 2014, 453 : 337 - 358
  • [40] Maximum power point tracking (MPPT) of a scale-up pressure retarded osmosis (PRO) osmotic power plant
    He, Wei
    Wang, Yang
    Shaheed, Mohammad Hasan
    APPLIED ENERGY, 2015, 158 : 584 - 596