On the existence of r-primitive pairs (α,f(α))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,f(\alpha ))$$\end{document} in finite fields

被引:0
作者
Hanglong Zhang [1 ]
Xiwang Cao [1 ]
机构
[1] Nanjing University of Aeronautics and Astronautics,Department of Mathematics
[2] MIIT,Key Laboratory of Mathematical Modelling and High Performance Computing of Air Vehicles (NUAA)
关键词
-Primitive element; Character sum; Finite field; 12E20; 11T23; 11T71;
D O I
10.1007/s00200-022-00585-0
中图分类号
学科分类号
摘要
Let r be a divisor of q-1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q-1.$$\end{document} An element α∈Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in {\mathbb {F}}_{q}$$\end{document} is said to be r-primitive if ord(α)=q-1r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha )=\frac{q-1}{r}$$\end{document}. In this paper, we discuss the existence of r-primitive pairs (α,f(α))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha , f(\alpha ))$$\end{document} where α∈Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in {\mathbb {F}}_q$$\end{document}, f(x) is a general rational function of degree sum m (degree sum is the sum of the degrees of numerator and denominator of f(x)) and the denominator of f(x) is square-free. Then we show that for any integer m>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m>0$$\end{document}, there exists a positive constant Br,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{r,m}$$\end{document} such that if q>Br,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q>B_{r,m}$$\end{document}, then such r-primitive pairs exist. In particular, we present a bound for Br,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{r,m}$$\end{document} with r=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=2$$\end{document} and m∈{2,3,4,5,6}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\in \{2,3,4,5,6\}$$\end{document}, and provide some conditions on the existence of 2-primitive pairs.
引用
收藏
页码:725 / 738
页数:13
相关论文
共 35 条
[1]  
Carvalho C(2021)On special pairs of primitive elements over a finite field Finite Fields Appl. 73 101839-730
[2]  
Guardieiro JP(2007)Constructing finite field extensions with large order elements SIAM J. Discrete Math. 21 726-197
[3]  
Neumann VGL(1985)Consecutive primitive roots in a finite field Proc. Am. Math. Soc. 93 189-56
[4]  
Tizziotti G(2003)The primitive normal basis theorem-without a computer J. Lond. Math. Soc. 67 41-419
[5]  
Cheng Q(2020)The trace of 2-primitive elements of finite fields Acta Arith. 192 397-319
[6]  
Cohen SD(2021)finite field extensions with the line or translate property for J. Aust. Math. Soc. 111 313-652
[7]  
Cohen SD(2022) -primitive elements Comptes Rendus Math. 360 641-246
[8]  
Huczynska S(2021)The existence of J. Number Theory 219 237-332
[9]  
Cohen SD(2010)-primitive points on curves using freeness Acta Arith. 143 299-1211
[10]  
Kapetanakis G(2014)Primitive values of rational functions at primitive elements of a finite field Q. J. Math. 65 1195-303