In the present paper with the aid of subordination, the authors introduce two subclasses of analytic functions denoted by Sα,β(λ)(α,β,λ∈R,α<1,β>1,λ≥0)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {S}}_{\alpha , \beta }(\lambda )~~(\alpha ,~\beta ,~ \lambda \in {\mathbb {R}},~\alpha <1, \beta >1, \lambda \ge 0)$$\end{document} and G(λ)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {G}}(\lambda )$$\end{document} defined in the open unit disk D:={z∈C:|z|<1}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {D}}:=\{z \in {\mathbb {C}}:|z|<1\}$$\end{document}. These subclasses are defined through a certain univalent function Sα,β\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {S}}_{\alpha , \beta }$$\end{document} and the generating function of the Gregory coefficients G(λ)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {G}}(\lambda )$$\end{document}. We determine upper bounds of the initial coefficients, Fekete–Szego¨\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ddot{o}$$\end{document} functional, Hankel determinant of second order, logarithmic coefficients and inverse coefficients of the functions belongs to these subclasses. Some of the corollaries of the main results are also pointed out.