Certain properties of Bazilevic˘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\breve{c}$$\end{document} type univalent class defined through subordinationCertain properties of Bazilevic˘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\breve{c}$$\end{document} type...T. Panigrahi et al.

被引:0
作者
T. Panigrahi [1 ]
S. Jena [1 ]
R. M. El-Ashwah [2 ]
机构
[1] Institute of Mathematics and Applications,Department of Mathematics, Faculty of Science
[2] Damietta University,undefined
关键词
Analytic function; Subordination; Fekete–Szegö functional; Hankel determinant; Gregory coefficients; Logarithmic coefficients; Inverse coefficients; 30C45; 30C50; 30C80;
D O I
10.1007/s13370-024-01216-2
中图分类号
学科分类号
摘要
In the present paper with the aid of subordination, the authors introduce two subclasses of analytic functions denoted by Sα,β(λ)(α,β,λ∈R,α<1,β>1,λ≥0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}_{\alpha , \beta }(\lambda )~~(\alpha ,~\beta ,~ \lambda \in {\mathbb {R}},~\alpha <1, \beta >1, \lambda \ge 0)$$\end{document} and G(λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}(\lambda )$$\end{document} defined in the open unit disk D:={z∈C:|z|<1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {D}}:=\{z \in {\mathbb {C}}:|z|<1\}$$\end{document}. These subclasses are defined through a certain univalent function Sα,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}_{\alpha , \beta }$$\end{document} and the generating function of the Gregory coefficients G(λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}(\lambda )$$\end{document}. We determine upper bounds of the initial coefficients, Fekete–Szego¨\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ddot{o}$$\end{document} functional, Hankel determinant of second order, logarithmic coefficients and inverse coefficients of the functions belongs to these subclasses. Some of the corollaries of the main results are also pointed out.
引用
收藏
相关论文
empty
未找到相关数据