Local uniqueness of minimizers for Choquard type equations

被引:0
作者
Liu, Lintao [1 ]
Teng, Kaimin [2 ]
Yuan, Shuai [3 ]
机构
[1] North Univ China, Dept Math, Taiyuan 030051, Shanxi, Peoples R China
[2] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Shanxi, Peoples R China
[3] Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050016, Hebei, Peoples R China
关键词
Choquard type equations; Local uniqueness; Pohozaev identity; NORMALIZED SOLUTIONS; POSITIVE SOLUTIONS; GROUND-STATES; EXISTENCE; MULTIPLICITY; BEHAVIOR;
D O I
10.1016/j.na.2025.113764
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider L-2-constraint minimizers of the Choquard energy functional with a trapping potential V(x) = |x|(2). It is known that positive minimizers exist if and only if the parameter a satisfies a < a* := ||Q||(2)(2), where Q is the unique positive radial solution of -Delta u + u - |u|(4/3) u = 0 in R-3. This paper focuses on the local uniqueness of minimizers by using energy estimates, blow-up analysis and establishing the Pohozaev identity.
引用
收藏
页数:20
相关论文
共 50 条
[31]   ON FINITE ENERGY SOLUTIONS OF FRACTIONAL ORDER EQUATIONS OF THE CHOQUARD TYPE [J].
Lei, Yutian .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (03) :1497-1515
[32]   On fractional Choquard equations [J].
d'Avenia, Pietro ;
Siciliano, Gaetano ;
Squassina, Marco .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (08) :1447-1476
[33]   Nonlinear Choquard equations involving a critical local term [J].
Seok, Jinmyoung .
APPLIED MATHEMATICS LETTERS, 2017, 63 :77-87
[34]   Uniqueness and non-degeneracy of ground states for Choquard equations with fractional Laplacian [J].
Deng, Yinbin ;
Peng, Shuangjie ;
Yang, Xian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 371 :299-352
[35]   Blow-up behavior of prescribed mass minimizers for nonlinear Choquard equations with singular potentials [J].
Dinh, Van Duong .
MONATSHEFTE FUR MATHEMATIK, 2020, 192 (03) :551-589
[36]   Normalized Solutions to the Critical Choquard-type Equations with Weakly Attractive Potential and Nonlocal Perturbation [J].
Lei Long ;
Fuyi Li ;
Ting Rong .
Zeitschrift für angewandte Mathematik und Physik, 2023, 74
[37]   Normalized Solutions to Quasilinear Choquard Equations With a Local Perturbation [J].
Shang, Xudong .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
[38]   Kirchhoff Equations with Choquard Exponential Type Nonlinearity Involving the Fractional Laplacian [J].
Goyal, Sarika ;
Mukherjee, Tuhina .
ACTA APPLICANDAE MATHEMATICAE, 2021, 172 (01)
[39]   Limiting behavior and local uniqueness of normalized solutions for mass critical Kirchhoff equations [J].
Hu, Tingxi ;
Tang, Chun-Lei .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (06)
[40]   Choquard equations with critical nonlinearities [J].
Li, Xinfu ;
Ma, Shiwang .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (04)