Local uniqueness of minimizers for Choquard type equations

被引:0
作者
Liu, Lintao [1 ]
Teng, Kaimin [2 ]
Yuan, Shuai [3 ]
机构
[1] North Univ China, Dept Math, Taiyuan 030051, Shanxi, Peoples R China
[2] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Shanxi, Peoples R China
[3] Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050016, Hebei, Peoples R China
关键词
Choquard type equations; Local uniqueness; Pohozaev identity; NORMALIZED SOLUTIONS; POSITIVE SOLUTIONS; GROUND-STATES; EXISTENCE; MULTIPLICITY; BEHAVIOR;
D O I
10.1016/j.na.2025.113764
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider L-2-constraint minimizers of the Choquard energy functional with a trapping potential V(x) = |x|(2). It is known that positive minimizers exist if and only if the parameter a satisfies a < a* := ||Q||(2)(2), where Q is the unique positive radial solution of -Delta u + u - |u|(4/3) u = 0 in R-3. This paper focuses on the local uniqueness of minimizers by using energy estimates, blow-up analysis and establishing the Pohozaev identity.
引用
收藏
页数:20
相关论文
共 50 条
[1]   Uniqueness of positive solutions of the Choquard type equations [J].
Wang, Tao ;
Yi, Taishan .
APPLICABLE ANALYSIS, 2017, 96 (03) :409-417
[2]   Concentration and local uniqueness of minimizers for mass critical degenerate Kirchhoff energy functional [J].
Hu, Tingxi ;
Lu, Lu .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 363 :275-306
[3]   Asymptotic Uniqueness of Minimizers for Hartree Type Equations with Fractional Laplacian [J].
Liu, Lintao ;
Teng, Kaimin ;
Yuan, Shuai .
JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (06)
[4]   MASS MINIMIZERS AND CONCENTRATION FOR NONLINEAR CHOQUARD EQUATIONS IN RN [J].
Ye, Hongyu .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2016, 48 (02) :393-417
[5]   Constraint minimizers of mass critical fractional Kirchhoff equations: concentration and uniqueness [J].
Liu, Lintao ;
Radulescu, Vicentiu D. ;
Yuan, Shuai .
NONLINEARITY, 2025, 38 (04)
[6]   Local uniqueness of constraint minimizers for double nonlocal functional [J].
Liu, Lintao ;
Yang, Haidong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 420 :180-222
[7]   NORMALIZED SOLUTIONS TO A CLASS OF CHOQUARD-TYPE EQUATIONS WITH POTENTIAL [J].
Long, Lei ;
Feng, Xiaojing .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2024, 63 (02) :515-536
[8]   Symmetry and uniqueness of minimizers of Hartree type equations with external Coulomb potential [J].
Georgiev, Vladimir ;
Venkov, George .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (02) :420-438
[9]   Uniqueness and symmetry of minimizers of Hartree type equations with external Coulomb potential [J].
Kawohl, Bernd ;
Kroemer, Stefan .
ADVANCES IN CALCULUS OF VARIATIONS, 2012, 5 (04) :427-432
[10]   MULTIPLE NORMALIZED SOLUTIONS FOR CHOQUARD EQUATIONS INVOLVING KIRCHHOFF TYPE PERTURBATION [J].
Liu, Zeng .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 54 (01) :297-319