Measuring the quantum state of photoelectrons

被引:0
作者
Laurell, Hugo [1 ]
Luo, Sizuo [1 ]
Weissenbilder, Robin [1 ]
Ammitzboell, Mattias [1 ]
Ahmed, Shahnawaz [2 ]
Soederberg, Hugo [1 ]
Petersson, C. Leon. M. [3 ]
Poulain, Venus [1 ]
Guo, Chen [1 ]
Dittel, Christoph [4 ,5 ,6 ]
Finkelstein-Shapiro, Daniel [7 ]
Squibb, Richard J. [8 ]
Feifel, Raimund [8 ]
Gisselbrecht, Mathieu [1 ]
Arnold, Cord L. [1 ]
Buchleitner, Andreas [4 ,5 ]
Lindroth, Eva [3 ]
Frisk Kockum, Anton [2 ]
L'Huillier, Anne [1 ]
Busto, David [1 ]
机构
[1] Lund Univ, Dept Phys, Lund, Sweden
[2] Chalmers Univ Technol, Dept Microtechnol & Nanosci, Gothenburg, Sweden
[3] Stockholm Univ, AlbaNova Univ Ctr, Dept Phys, Stockholm, Sweden
[4] Albert Ludwigs Univ Freiburg, Phys Inst, Freiburg, Germany
[5] Albert Ludwigs Univ Freiburg, EUCOR Ctr Quantum Sci & Quantum Comp, Freiburg, Germany
[6] Albert Ludwigs Univ Freiburg, Freiburg Inst Adv Studies, Freiburg, Germany
[7] Univ Nacl Autonoma Mexico, Inst Quim, Mexico City, Mexico
[8] Univ Gothenburg, Dept Phys, Gothenburg, Sweden
基金
欧洲研究理事会; 瑞典研究理事会;
关键词
ATTOSECOND; SPECTROSCOPY; PHOTOIONIZATION; RECONSTRUCTION; ENTANGLEMENT; DELAYS; TIME;
D O I
10.1038/s41566-024-01607-8
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A photoelectron, emitted due to the absorption of light quanta as described by the photoelectric effect, is often characterized experimentally by a classical quantity, its momentum. However, since the photoelectron is a quantum object, its rigorous characterization requires the reconstruction of the complete quantum state, the photoelectron's density matrix. Here we use quantum-state tomography to fully characterize photoelectrons emitted from helium and argon atoms upon absorption of ultrashort, extreme ultraviolet light pulses. While in helium we measure a pure photoelectronic state, in argon, spin-orbit interaction induces entanglement between the ion and the photoelectron, leading to a reduced purity of the photoelectron state. Our work shows how state tomography gives new insights into the fundamental quantum aspects of light-induced electronic processes in matter, bridging the fields of photoelectron spectroscopy and quantum information and offering new spectroscopic possibilities for quantum technology.
引用
收藏
页码:352 / 357
页数:14
相关论文
共 50 条
  • [21] Quantum state engineering by nonlinear quantum interference
    Cui, Liang
    Su, Jie
    Li, Jiamin
    Liu, Yuhong
    Li, Xiaoying
    Ou, Z. Y.
    PHYSICAL REVIEW A, 2020, 102 (03)
  • [22] Geometry of quantum state space and quantum correlations
    Prasenjit Deb
    Quantum Information Processing, 2016, 15 : 1629 - 1638
  • [23] Preparation of freezing quantum state for quantum coherence
    Yang, Lian-Wu
    Man, Zhong-Xiao
    Zhang, Ying-Jie
    Han, Feng
    Du, Shao-jiang
    Xia, Yun-Jie
    QUANTUM INFORMATION PROCESSING, 2018, 17 (06)
  • [24] Variational quantum circuits for quantum state tomography
    Liu, Yong
    Wang, Dongyang
    Xue, Shichuan
    Huang, Anqi
    Fu, Xiang
    Qiang, Xiaogang
    Xu, Ping
    Huang, He-Liang
    Deng, Mingtang
    Guo, Chu
    Yang, Xuejun
    Wu, Junjie
    PHYSICAL REVIEW A, 2020, 101 (05)
  • [25] SECURE QUANTUM CARRIERS FOR QUANTUM STATE SHARING
    Karimipour, Vahid
    Marvian, Milad
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2012, 10 (02)
  • [26] Benchmarking quantum state transfer on quantum devices
    Yi-Te Huang
    Lin, Jhen-Dong
    Ku, Huan-Yu
    Chen, Yueh-Nan
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [27] Practical quantum teleportation of an unknown quantum state
    Amin, Syed Tahir
    Khalique, Aeysha
    CANADIAN JOURNAL OF PHYSICS, 2017, 95 (05) : 498 - 503
  • [28] Entanglement and the process of measuring the position of a quantum particle
    Apel, V. M.
    Curilef, S.
    Plastino, A. R.
    ANNALS OF PHYSICS, 2015, 354 : 570 - 589
  • [29] Measuring microwave quantum states: Tomogram and moments
    Filippov, Sergey N.
    Man'ko, Vladimir I.
    PHYSICAL REVIEW A, 2011, 84 (03):
  • [30] Quantum technologies with optically interfaced solid-state spins
    Awschalom, David D.
    Hanson, Ronald
    Wrachtrup, Joerg
    Zhou, Brian B.
    NATURE PHOTONICS, 2018, 12 (09) : 516 - 527