On the Minimization of the Willmore Energy Under a Constraint on Total Mean Curvature and Area

被引:1
作者
Scharrer, Christian [1 ]
West, Alexander [1 ]
机构
[1] Univ Bonn, Inst Appl Math, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
SURFACES; SHAPE; FLOW;
D O I
10.1007/s00205-025-02087-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by a model for lipid bilayer cell membranes, we study the minimization of the Willmore functional in the class of oriented closed surfaces with prescribed total mean curvature, prescribed area, and prescribed genus. Adapting methods previously developed by Keller-Mondino-Rivi & egrave;re, Bauer-Kuwert, and Ndiaye-Sch & auml;tzle, we prove the existence of smooth minimizers for a large class of constraints. Moreover, we analyze the asymptotic behaviour of the energy profile close to the unit sphere and consider the total mean curvature of axisymmetric surfaces.
引用
收藏
页数:62
相关论文
共 58 条
[31]   Gradient flow for the Willmore functional [J].
Kuwert, E ;
Schätzle, R .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2002, 10 (02) :307-339
[32]  
Kuwert E, 2001, J DIFFER GEOM, V57, P409, DOI 10.4310/jdg/1090348128
[33]  
Kuwert E, 2012, ANN SCUOLA NORM-SCI, V11, P605
[34]  
Kuwert E, 2012, COMMUN ANAL GEOM, V20, P313
[35]   COMPLETE MINIMAL SURFACES IN S3 [J].
LAWSON, HB .
ANNALS OF MATHEMATICS, 1970, 92 (02) :335-&
[36]  
LI P, 1982, INVENT MATH, V69, P269
[37]  
Mantegazza C, 1996, J DIFFER GEOM, V43, P807, DOI 10.4310/jdg/1214458533
[38]   Min-Max theory and the Willmore conjecture [J].
Marques, Fernando C. ;
Neves, Andre .
ANNALS OF MATHEMATICS, 2014, 179 (02) :683-782
[39]  
Menne U, 2016, INDIANA U MATH J, V65, P977
[40]   OBSERVATION OF STABLE SHAPES AND CONFORMAL DIFFUSION IN GENUS-2 VESICLES [J].
MICHALET, X ;
BENSIMON, D .
SCIENCE, 1995, 269 (5224) :666-668