On the Minimization of the Willmore Energy Under a Constraint on Total Mean Curvature and Area

被引:0
作者
Scharrer, Christian [1 ]
West, Alexander [1 ]
机构
[1] Univ Bonn, Inst Appl Math, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
SURFACES; SHAPE; FLOW;
D O I
10.1007/s00205-025-02087-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by a model for lipid bilayer cell membranes, we study the minimization of the Willmore functional in the class of oriented closed surfaces with prescribed total mean curvature, prescribed area, and prescribed genus. Adapting methods previously developed by Keller-Mondino-Rivi & egrave;re, Bauer-Kuwert, and Ndiaye-Sch & auml;tzle, we prove the existence of smooth minimizers for a large class of constraints. Moreover, we analyze the asymptotic behaviour of the energy profile close to the unit sphere and consider the total mean curvature of axisymmetric surfaces.
引用
收藏
页数:62
相关论文
共 58 条
[1]  
ALEXANDROV A. D., 1962, Ann. Mat. Pura Appl., V58, P303, DOI [10.1007/BF02413056, DOI 10.1007/BF02413056]
[2]   FIRST VARIATION OF A VARIFOLD [J].
ALLARD, WK .
ANNALS OF MATHEMATICS, 1972, 95 (03) :417-&
[3]  
[Anonymous], 1992, An introduction to Teichmuller spaces
[4]  
[Anonymous], 2002, Cambridge Tracts in Mathematics
[5]  
Aubin T., 1982, Grundlehren der Mathematischen Wissenschaften
[6]  
Bauer M, 2003, INT MATH RES NOTICES, V2003, P553
[7]  
Berger M., 2003, A Panoramic View of Riemannian Geometry
[8]   Energy quantization for Willmore surfaces and applications [J].
Bernard, Yann ;
Riviere, Tristan .
ANNALS OF MATHEMATICS, 2014, 180 (01) :87-136
[9]  
Blaschke W., 2013, Vorlesungen uber Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitatstheorie III: Differentialgeometrie der Kreise und Kugeln, V29
[10]   Gagliardo-Nirenberg inequalities and non-inequalities: The full story [J].
Brezis, Haim ;
Mironescu, Petru .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (05) :1355-1376