On a Dini Type Blow-Up Condition for Solutions of Higher Order Nonlinear Differential Inequalities

被引:0
作者
Kon'kov, A. A. [1 ,2 ]
Shishkov, A. E. [1 ]
机构
[1] Lomonosov Moscow State Univ, Moscow Ctr Fundamental & Appl Math, Moscow, Russia
[2] RUDN Univ, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
higher order differential inequalities; nonlinearity; blow-up; ASYMPTOTIC-BEHAVIOR; NONEXISTENCE;
D O I
10.1134/S1064562424601276
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a Dini type blow-up condition for solutions of the differential inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\limits_{|\alpha | = m} {{\partial }<^>{\alpha }}{{a}_{\alpha }}(x,u) \geqslant g({\text{|}}u{\text{|)}}\;{\text{in}}\;{\kern 1pt} {{\mathbb{R}}<^>{n}},$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m,n \geqslant 1$$\end{document} are integers and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{a}_{\alpha }}$$\end{document} and g are some functions.
引用
收藏
页码:308 / 311
页数:4
相关论文
共 16 条
  • [11] Fading absorption in non-linear elliptic equations
    Marcus, Moshe
    Shishkov, Andrey
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (02): : 315 - 336
  • [12] Mitidieri E., 2001, T MAT I STEKLOVA, V234, P1
  • [13] Nonexistence results of positive entire solutions for quasilinear elliptic inequalities
    Naito, K
    Usami, H
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1997, 40 (02): : 244 - 253
  • [14] Entire solutions of the inequality div(A(vertical bar Du vertical bar)Du)>=f(u)
    Naito, Y
    Usami, H
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1997, 225 (01) : 167 - 175
  • [15] Admissible initial growth for diffusion equations with weakly superlinear absorption
    Shishkov, Andrey
    Veron, Laurent
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (05)
  • [16] ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF SEMI-LINEAR ELLIPTICAL EQUATIONS IN RN
    VERON, L
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 1981, 127 : 25 - 50