Photonic neuromorphic accelerators for event-based imaging flow cytometry

被引:0
作者
Tsilikas, I. [1 ,2 ]
Tsirigotis, A. [1 ]
Sarantoglou, G. [1 ]
Deligiannidis, S. [3 ]
Bogris, A. [3 ]
Posch, C. [4 ]
van den Branden, G. [4 ]
Mesaritakis, C. [1 ]
机构
[1] Univ Aegean, Dept Informat & Commun Syst Engn, Palama 2, Samos 83100, Greece
[2] Sch Appl Math & Phys Sci, Dept Phys, Zografou Campus, Athens 15780, Greece
[3] Univ West Att, Dept Informat & Comp Engn, Egaleo, Greece
[4] GenSight Biol, 74 Rue Faubourg St Antoine, F-75012 Paris, France
基金
欧盟地平线“2020”;
关键词
D O I
10.1038/s41598-024-75667-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, we present experimental results of a high-speed label-free imaging cytometry system that seamlessly merges the high-capturing rate and data sparsity of an event-based CMOS camera with lightweight photonic neuromorphic processing. This combination offers high classification accuracy and a massive reduction in the number of trainable parameters of the digital machine-learning back-end. The event-based camera is capable of capturing 1 Gevents/sec, where events correspond to pixel contrast changes, similar to the retina's ganglion cell function. The photonic neuromorphic accelerator is based on a hardware-friendly passive optical spectrum slicing technique that is able to extract meaningful features from the generated spike-trains using a purely analogue version of the convolutional operation. The experimental scenario comprises the discrimination of artificial polymethyl methacrylate calibrated beads, having different diameters, flowing at a mean speed of 0.1 m/sec. Classification accuracy, using only lightweight digital machine-learning schemes has topped at 98.2%. On the other hand, by experimentally pre-processing the raw spike data through the proposed photonic neuromorphic spectrum slicer at a rate of 3 x 106 images per second, we achieved an accuracy of 98.6%. This performance was accompanied by a reduction in the number of trainable parameters at the classification back-end by a factor ranging from 8 to 22, depending on the configuration of the digital neural network. These results confirm that neuromorphic sensing and neuromorphic computing can be efficiently merged to a unified bio-inspired system, offering a holistic enhancement in emerging bio-imaging applications.
引用
收藏
页数:15
相关论文
共 37 条
[1]  
Abreu S., 2023, P IEEE CVF C COMP VI, P4139, DOI 10.1109/CVPRW59228.2023.00435
[2]   Optuna: A Next-generation Hyperparameter Optimization Framework [J].
Akiba, Takuya ;
Sano, Shotaro ;
Yanase, Toshihiko ;
Ohta, Takeru ;
Koyama, Masanori .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :2623-2631
[3]   Imaging Flow Cytometry: Coping with Heterogeneity in Biological Systems [J].
Barteneva, Natasha S. ;
Fasler-Kan, Elizaveta ;
Vorobjev, Ivan A. .
JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 2012, 60 (10) :723-733
[4]   Label-free cell cycle analysis for high-throughput imaging flow cytometry [J].
Blasi, Thomas ;
Hennig, Holger ;
Summers, Huw D. ;
Theis, Fabian J. ;
Cerveira, Joana ;
Patterson, James O. ;
Davies, Derek ;
Filby, Andrew ;
Carpenter, Anne E. ;
Rees, Paul .
NATURE COMMUNICATIONS, 2016, 7
[5]  
Coddington I, 2016, OPTICA, V3, P414, DOI [10.1364/optica.3.000414, 10.1364/OPTICA.3.000414]
[6]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893
[7]   Diagnostic Potential of Imaging Flow Cytometry [J].
Doan, Minh ;
Vorobjev, Ivan ;
Rees, Paul ;
Filby, Andrew ;
Wolkenhauer, Olaf ;
Goldfeld, Anne E. ;
Lieberman, Judy ;
Barteneva, Natasha ;
Carpenter, Anne E. ;
Hennig, Holger .
TRENDS IN BIOTECHNOLOGY, 2018, 36 (07) :649-652
[8]   Parallel convolutional processing using an integrated photonic tensor core [J].
Feldmann, J. ;
Youngblood, N. ;
Karpov, M. ;
Gehring, H. ;
Li, X. ;
Stappers, M. ;
Le Gallo, M. ;
Fu, X. ;
Lukashchuk, A. ;
Raja, A. S. ;
Liu, J. ;
Wright, C. D. ;
Sebastian, A. ;
Kippenberg, T. J. ;
Pernice, W. H. P. ;
Bhaskaran, H. .
NATURE, 2021, 589 (7840) :52-+
[9]   On-chip CMOS-compatible all-optical integrator [J].
Ferrera, M. ;
Park, Y. ;
Razzari, L. ;
Little, B. E. ;
Chu, S. T. ;
Morandotti, R. ;
Moss, D. J. ;
Azana, J. .
NATURE COMMUNICATIONS, 2010, 1
[10]   Event-Based Vision: A Survey [J].
Gallego, Guillermo ;
Delbruck, Tobi ;
Orchard, Garrick Michael ;
Bartolozzi, Chiara ;
Taba, Brian ;
Censi, Andrea ;
Leutenegger, Stefan ;
Davison, Andrew ;
Conradt, Jorg ;
Daniilidis, Kostas ;
Scaramuzza, Davide .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (01) :154-180