Yolk-shell electron-rich Ru@hollow pyridinic-N-doped carbon nanospheres with tunable shell thickness and ultrahigh surface area for biomass-derived levulinic acid hydrogenation under mild conditions

被引:6
作者
Yang, Jingsong [1 ]
Shi, Ruidong [1 ]
Xu, Xiaoxin [1 ]
Li, Yuanting [1 ]
Wang, Xue [1 ]
Zhou, Gongbing [1 ]
机构
[1] Chongqing Normal Univ, Coll Chem, Chongqing Key Lab Green Catalysis Mat & Technol, Chongqing 401331, Peoples R China
来源
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY | 2024年 / 355卷
基金
中国国家自然科学基金;
关键词
Yolk-shell structure; Shell thickness; Selective hydrogenation; Electron-rich Ru; Biomass upgrading; GAMMA-VALEROLACTONE; CATALYSTS; RUTHENIUM; EFFICIENT; NANOPARTICLES; SIZE;
D O I
10.1016/j.apcatb.2024.124193
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aiming to efficiently upgrade renewable biomass-derived levulinic acid (LA) into.-valerolactone (GVL), we have devised yolk-shell electron-rich Ru@hollow pyridinic-N-doped carbon nanospheres, featuring a tunable shell thickness (20 70 nm) and an ultrahigh surface area (4016 m(2) g(-1)). Experimental and theoretical investigations reveal that the strategic formation of the yolk-shell structure and appropriate thinning of the carbon shell facilitate the generation of electron-rich Ru-0 and a positive shift of the d-band center towards the Fermi level by increasing surface pyridinic-N species. These modifications suitably intensify Ru-0 -H interaction, promote reactant adsorption, stimulate electron transfer between active H and the C=O group of LA, and ultimately reduce apparent activation energy. Consequently, a high LA turnover frequency (18733.4 h(-1) at 30 degrees C) and GVL selectivity (99.9%), alongside excellent stability up to eight cycles, are achieved, markedly outperforming externally-supported analogues. These findings afford valuable insights into designing yolk-shell nanostructures for biomass upgrading through microenvironment engineering.
引用
收藏
页数:15
相关论文
共 65 条
[1]   Analysis of Kinetics and Reaction Pathways in the Aqueous-Phase Hydrogenation of Levulinic Acid To Form γ-Valerolactone over Ru/C [J].
Abdelrahman, Omar Ali ;
Heyden, Andreas ;
Bond, Jesse Q. .
ACS CATALYSIS, 2014, 4 (04) :1171-1181
[2]   Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon [J].
Bi, Qing-Yuan ;
Lin, Jian-Dong ;
Liu, Yong-Mei ;
He, He-Yong ;
Huang, Fu-Qiang ;
Cao, Yong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (39) :11849-11853
[3]   Controlling the Compositional Chemistry in Single Nanoparticles for Functional Hollow Carbon Nanospheres [J].
Bin, De-Shan ;
Chi, Zi-Xiang ;
Li, Yutao ;
Zhang, Ke ;
Yang, Xinzheng ;
Sun, Yong-Gang ;
Piao, Jun-Yu ;
Cao, An-Min ;
Wan, Li-Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (38) :13492-13498
[4]   Rational nanoparticle synthesis to determine the effects of size, support, and K dopant on Ru activity for levulinic acid hydrogenation to γ-valerolactone [J].
Cao, Shuo ;
Monnier, John R. ;
Williams, Christopher T. ;
Diao, Weijian ;
Regalbuto, John R. .
JOURNAL OF CATALYSIS, 2015, 326 :69-81
[5]   Highly selective hydrogenation of arenes using nanostructured ruthenium catalysts modified with a carbon-nitrogen matrix [J].
Cui, Xinjiang ;
Surkus, Annette-Enrica ;
Junge, Kathrin ;
Topf, Christoph ;
Radnik, Joerg ;
Kreyenschulte, Carsten ;
Beller, Matthias .
NATURE COMMUNICATIONS, 2016, 7
[6]   Hollow Carbon Sphere Nanoreactors Loaded with PdCu Nanoparticles: Void-Confinement Effects in Liquid-Phase Hydrogenations [J].
Dong, Chao ;
Yu, Qun ;
Ye, Run-Ping ;
Su, Panpan ;
Liu, Jian ;
Wang, Guang-Hui .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (42) :18374-18379
[7]   Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: A critical review [J].
Dutta, Shanta ;
Yu, Iris K. M. ;
Tsang, Daniel C. W. ;
Ng, Yun Hau ;
Ok, Yong Sik ;
Sherwood, James ;
Clark, James H. .
CHEMICAL ENGINEERING JOURNAL, 2019, 372 :992-1006
[8]   Efficient hydrogen production from glycerol by steam reforming with carbon supported ruthenium catalysts [J].
Gallegos-Suarez, E. ;
Guerrero-Ruiz, A. ;
Rodriguez-Ramos, I. .
CARBON, 2016, 96 :578-587
[9]   Palladium-encapsulated hollow porous carbon nanospheres as nanoreactors for highly efficient and size-selective catalysis [J].
Gao, Shengguang ;
Zhang, Li ;
Yu, Haitao ;
Wang, Huaqing ;
He, Zhiwei ;
Huang, Kun .
CARBON, 2021, 175 :307-311
[10]   Notched-Polyoxometalate Strategy to Fabricate Atomically Dispersed Ru Catalysts for Biomass Conversion [J].
Han, Yunhu ;
Dai, Jun ;
Xu, Ruirui ;
Ai, Wenying ;
Zheng, Lirong ;
Wang, Yu ;
Yan, Wensheng ;
Chen, Wenxing ;
Luo, Jun ;
Liu, Qiang ;
Wang, Dingsheng ;
Li, Yadong .
ACS CATALYSIS, 2021, 11 (05) :2669-2675