Enhancing flood risk assessment in northern Morocco with tuned machine learning and advanced geospatial techniques

被引:0
作者
Moutaouakil, Wassima [1 ]
Hamida, Soufiane [2 ,3 ]
Saleh, Shawki [1 ]
Lamrani, Driss [1 ]
Mahjoubi, Mohamed Amine [1 ]
Cherradi, Bouchaib [1 ,2 ,4 ]
Raihani, Abdelhadi [1 ]
机构
[1] Hassan II Univ Casablanca, EEIS Lab, ENSET Mohammedia, Mohammadia, Morocco
[2] Hassan II Univ Casablanca, 2IACS Lab, ENSET Mohammedia, Mohammadia 28830, Morocco
[3] SupMTI Rabat, GENIUS Lab, Rabat, Morocco
[4] Prov Sect El Jadida, STIE Team, CRMEF Casablanca Settat, El Jadida, Morocco
关键词
remote sensing; conditioning factors; GIS; flood susceptibility; machine learning; DEM; RIVER; AREA; ALGORITHM;
D O I
10.1007/s11442-024-2301-4
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Mapping floods is crucial for effective disaster management. This study focuses on flood assessment in northern Morocco, specifically Tangier, Tetouan, and Larache. Due to the lack of a comprehensive flood inventory map, we used unsupervised learning techniques, such as K-means clustering and fuzzy logic algorithms, to predict flood-prone areas. We identified nine conditioning factors influencing flood risk: elevation, slope, aspect, plan curvature, profile curvature, land use, soil type, normalized difference vegetation index (NDVI), and topographic position index (TPI). Using Landsat-8 imagery and a Digital Elevation Model (DEM) within a Geographic Information System (GIS), we analyzed topographic and geo-environmental variables. K-means clustering achieved silhouette scores of 0.66 in Tangier and 0.70 in Tetouan, while the fuzzy logic method in Larache produced a Davies-Bouldin Index (DBI) score of 0.35. The maps classified flood risk levels into low, moderate, and high categories. This research demonstrates the integration of machine learning and remote sensing for predicting flood-prone areas without existing flood inventory maps. Our findings highlight the main factors contributing to flash floods and assess their impact, enhancing the understanding of flood dynamics and improving flood management strategies in vulnerable regions.
引用
收藏
页码:2477 / 2508
页数:32
相关论文
共 42 条
[1]   Know to Predict, Forecast to Warn: A Review of Flood Risk Prediction Tools [J].
Antwi-Agyakwa, Kwesi Twum ;
Afenyo, Mawuli Kwaku ;
Angnuureng, Donatus Bapentire .
WATER, 2023, 15 (03)
[2]   Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan [J].
Ayalew, Lulseged ;
Yamagishi, Hiromitsu ;
Ugawa, Norimitsu .
LANDSLIDES, 2004, 1 (01) :73-81
[3]  
Balestra F., 2022, EWAS5, P36
[4]  
Behling CW, 2020, GEOTECH SP, P838
[5]   Cluster validation techniques for genome expression data [J].
Bolshakova, N ;
Azuaje, F .
SIGNAL PROCESSING, 2003, 83 (04) :825-833
[6]   Multivariate Analysis and Machine Learning Approach for Mapping the Variability and Vulnerability of Urban Flooding: The Case of Tangier City, Morocco [J].
Bouramtane, Tarik ;
Kacimi, Ilias ;
Bouramtane, Khalil ;
Aziz, Maryam ;
Abraham, Shiny ;
Omari, Khalid ;
Valles, Vincent ;
Leblanc, Marc ;
Kassou, Nadia ;
El Beqqali, Omar ;
Bahaj, Tarik ;
Morarech, Moad ;
Yameogo, Suzanne ;
Barbiero, Laurent .
HYDROLOGY, 2021, 8 (04)
[7]   Global evidence that deforestation amplifies flood risk and severity in the developing world [J].
Bradshaw, Corey J. A. ;
Sodhi, Navjot S. ;
Peh, Kelvin S. -H. ;
Brook, Barry W. .
GLOBAL CHANGE BIOLOGY, 2007, 13 (11) :2379-2395
[8]   Vetiver grass-microbe interactions for soil remediation [J].
Chen, Xun Wen ;
Wong, James Tsz Fung ;
Wang, Jun-Jian ;
Wong, Ming Hung .
CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2021, 51 (09) :897-938
[9]   Flash-flood potential index estimation using fuzzy logic combined with deep learning neural network, naive Bayes, XGBoost and classification and regression tree [J].
Costache, Romulus ;
Arabameri, Alireza ;
Moayedi, Hossein ;
Quoc Bao Pham ;
Santosh, M. ;
Hoang Nguyen ;
Pandey, Manish ;
Binh Thai Pham .
GEOCARTO INTERNATIONAL, 2022, 37 (23) :6780-6807