Scale-Compressed Technique in Finite-Difference Time-Domain Method for Multi-Layered Anisotropic Media

被引:0
|
作者
Zhang, Yuxian [1 ,2 ,3 ]
Kang, Yilin [1 ,2 ,3 ]
Feng, Naixing [1 ,2 ,3 ]
Feng, Xiaoli [1 ,2 ,3 ]
Huang, Zhixiang [1 ,2 ,3 ]
Elsherbeni, Atef Z. [4 ]
机构
[1] Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei 100816, Peoples R China
[2] Informat Mat & Intelligent Sensing Lab Anhui Prov, Hefei 230601, Peoples R China
[3] Anhui Univ, Sch Elect & Informat Engn, Hefei 230601, Peoples R China
[4] Colorado Sch Mines Golden, Elect Engn Dept, Golden, CO 80401 USA
基金
中国国家自然科学基金;
关键词
Finite difference methods; Anisotropic; Time-domain analysis; Media; Three-dimensional displays; Anisotropic magnetoresistance; Vectors; Lighting; Tensors; Periodic structures; Curl matrix; layered biaxial anisotropy; oblique illumination; SCT-FDTD method; transverse wave vectors; PERIODIC STRUCTURES; OBLIQUE-INCIDENCE; SPECTRAL FDTD; SCATTERING;
D O I
10.1109/JMMCT.2024.3524598
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, to breakthrough the constraint from conventional finite-difference time-domain (FDTD) method, we firstly propose a scale-compressed technique (SCT) working for the FDTD method, been called SCT-FDTD for short, to reduce three-dimensional (3-D) into one-dimensional (1-D) processes and capture the propagation coefficients. Combining with Maxwell's curl equations, the transverse wave vectors (k(x), k(y)) can be defined as the fixed values, which let the curl operator become the curl matrix with only z-directional derivative. The obvious advantage demonstrated by above is that it does not require excessive computational processes to obtain high-dimensional numerical results with reasonable accuracy. By comparing with commercial software COMSOL by the TE/TM illumination in multi-layered biaxial anisotropy, those results from SCT-FDTD method are entirely consistent. More importantly, the SCT-FDTD possesses less CPU time and lower computational resources for COMSOL.
引用
收藏
页码:85 / 93
页数:9
相关论文
共 50 条
  • [21] FINITE-DIFFERENCE TIME-DOMAIN METHOD FOR ANTENNA RADIATION
    TIRKAS, PA
    BALANIS, CA
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1992, 40 (03) : 334 - 340
  • [22] Finite-difference time-domain method in custom hardware?
    Schneider, RN
    Okoniewski, MM
    Turner, LE
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2002, 12 (12) : 488 - 490
  • [23] Geometrical optics and the finite-difference time-domain method
    Arnold, J. M.
    2012 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2012, : 1054 - 1056
  • [24] Implicit nonstaggered finite-difference time-domain method
    Wang, SM
    Lee, R
    Teixeira, FL
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2005, 45 (04) : 317 - 319
  • [25] On the Stability of the Finite-Difference Time-Domain Modeling of Lorentz Media
    Panaretos, Anastasios H.
    Diaz, Rodolfo E.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2011, 21 (06) : 283 - 285
  • [26] Finite-difference time-domain methods
    Teixeira, F. L.
    Sarris, C.
    Zhang, Y.
    Na, D. -Y.
    Berenger, J. -P.
    Su, Y.
    Okoniewski, M.
    Chew, W. C.
    Backman, V.
    Simpson, J. J.
    NATURE REVIEWS METHODS PRIMERS, 2023, 3 (01):
  • [27] Finite-difference time-domain methods
    F. L. Teixeira
    C. Sarris
    Y. Zhang
    D.-Y. Na
    J.-P. Berenger
    Y. Su
    M. Okoniewski
    W. C. Chew
    V. Backman
    J. J. Simpson
    Nature Reviews Methods Primers, 3
  • [28] Modelling electromagnetically induced transparency media using the finite-difference time-domain method
    Neff, Curtis W.
    Andersson, L. Mauritz
    Qiu, Min
    NEW JOURNAL OF PHYSICS, 2007, 9
  • [29] Incorporating Effective Media in the Finite-Difference Time-Domain Method for Spherical Nanoparticle Modeling
    Panaretos, Anastasios H.
    Diaz, Rodolfo E.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2014, 62 (08) : 4381 - 4386
  • [30] Finite-difference time-domain method for modelling of seismic wave propagation in viscoelastic media
    Kalyani, V. K.
    Pallavika
    Chakraborty, S. K.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 237 : 133 - 145