Cost-optimal adaptive FEM with linearization and algebraic solver for semilinear elliptic PDEs

被引:0
|
作者
Brunner, Maximilian [1 ]
Praetorius, Dirk [1 ]
Streitberger, Julian [1 ]
机构
[1] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
关键词
FINITE-ELEMENT-METHOD; OPTIMAL CONVERGENCE-RATES; STOPPING CRITERIA;
D O I
10.1007/s00211-025-01455-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider scalar semilinear elliptic PDEs, where the nonlinearity is strongly monotone, but only locally Lipschitz continuous. To linearize the arising discrete nonlinear problem, we employ a damped Zarantonello iteration, which leads to a linear Poisson-type equation that is symmetric and positive definite. The resulting system is solved by a contractive algebraic solver such as a multigrid method with local smoothing. We formulate a fully adaptive algorithm that equibalances the various error components coming from mesh refinement, iterative linearization, and algebraic solver. We prove that the proposed adaptive iteratively linearized finite element method (AILFEM) guarantees convergence with optimal complexity, where the rates are understood with respect to the overall computational cost (i.e., the computational time). Numerical experiments investigate the involved adaptivity parameters.
引用
收藏
页码:409 / 445
页数:37
相关论文
共 11 条
  • [1] Cost-optimal adaptive iterative linearized FEM for semilinear elliptic PDEs
    Becker, Roland
    Brunner, Maximilian
    Innerberger, Michael
    Melenk, Jens Markus
    Praetorius, Dirk
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (04) : 2193 - 2225
  • [2] Rate-optimal goal-oriented adaptive FEM for semilinear elliptic PDEs
    Becker, Roland
    Brunner, Maximilian
    Innerberger, Michael
    Melenk, Jens Markus
    Praetorius, Dirk
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 118 : 18 - 35
  • [3] Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs
    Brunner, Maximilian
    Innerberger, Michael
    Miraci, Ani
    Praetorius, Dirk
    Streitberger, Julian
    Heid, Pascal
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 44 (03) : 1560 - 1596
  • [4] Rate optimal adaptive FEM with inexact solver for nonlinear operators
    Gantner, Gregor
    Haberl, Alexander
    Praetorius, Dirk
    Stiftner, Bernhard
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (04) : 1797 - 1831
  • [5] Optimal complexity of goal-oriented adaptive FEM for nonsymmetric linear elliptic PDEs
    Bringmann, Philipp
    Brunner, Maximilian
    Praetorius, Dirk
    Streitberger, Julian
    JOURNAL OF NUMERICAL MATHEMATICS, 2024,
  • [6] FEM for Semilinear Elliptic Optimal Control with Nonlinear and Mixed Constraints
    Bui Trong Kien
    Arnd Rösch
    Nguyen Hai Son
    Nguyen Van Tuyen
    Journal of Optimization Theory and Applications, 2023, 197 : 130 - 173
  • [7] FEM for Semilinear Elliptic Optimal Control with Nonlinear and Mixed Constraints
    Kien, Bui Trong
    Roesch, Arnd
    Son, Nguyen Hai
    Tuyen, Nguyen Van
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 197 (01) : 130 - 173
  • [8] On full linear convergence and optimal complexity of adaptive FEM with inexact solver
    Bringmann, Philipp
    Feischl, Michael
    Miraci, Ani
    Praetorius, Dirk
    Streitberger, Julian
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 180 : 102 - 129
  • [9] MooAFEM: An object oriented Matlab code for higher-order adaptive FEM for (nonlinear) elliptic PDEs
    Innerberger, Michael
    Praetorius, Dirk
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 442
  • [10] Adaptive FEM with coarse initial mesh guarantees optimal convergence rates for compactly perturbed elliptic problems
    Bespalov, Alex
    Haberl, Alexander
    Praetorius, Dirk
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 317 : 318 - 340