Hybrid nanofluids and bioconvection: insights into bacterial behavior and particle interaction

被引:0
作者
Mohamed, E. M. [1 ]
Nasr, E. H. [1 ]
Ahmed, Karim K. [2 ]
Emadifar, Homan [3 ,4 ]
Ahmed, Hamdy M. [5 ]
Alkhatib, Soliman [6 ]
机构
[1] Delta Higher Inst Engn & Technol, Mansoura, Egypt
[2] German Int Univ GIU, Fac Engn, Dept Math, Cairo, Egypt
[3] Saveetha Univ, Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Math, Chennai 602105, Tamil Nadu, India
[4] Islamic Azad Univ Hamedan, Dept Math, Hamedan Branch, Hamadan, Iran
[5] El Shorouk Acad, Higher Inst Engn, Dept Phys & Engn Math, El Shorouk City, Cairo, Egypt
[6] Amer Univ Emirates AUE, Coll Comp Informat Technol, Dubai Intel Acad City, POB 503000, Dubai, U Arab Emirates
来源
BOUNDARY VALUE PROBLEMS | 2025年 / 2025卷 / 01期
关键词
Hybrid nanofluid; Bioconvection; Microorganism diffusion coefficient; GROUP SIMILARITY SOLUTIONS; LAX PAIR; EQUATION;
D O I
10.1186/s13661-025-02025-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The collective movement or flow of microorganisms, such as bacteria or algae, brought on by their biological activity is called bioconvection. This study investigates a hybrid nanofluid's unstable boundary layer stagnation point flow through a permeable sheet containing nanoparticles and gyrotactic bacteria. The potential applications of this finding in bioconvection, which is critical to ecological and biotechnological processes, make it significant. The study takes a mathematical modeling approach, using group-theoretical methods to convert a system of partial differential equations (PDEs) into a system of ordinary differential equations (ODEs). This allows for a thorough examination of the hybrid nanofluid's flow characteristics. The latest investigation was spurred by the need to examine several parameters, such as the Prandtl number Pr, Peclet number Pe, Brownian motion coefficient DB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D_{B}$\end{document}, microorganism diffusion coefficient DN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D_{N}$\end{document}, thermophoresis diffusion coefficient DT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D_{T}$\end{document}, temperature ratio delta T, concentration difference Delta C, and Schmidt number SC. As the value of Delta C increases, the velocity also rises. On the other hand, when Pr and delta T increase, the velocity decreases. The temperature rises in proportion to the levels of DB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D_{B}$\end{document}. The values of DT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D_{T}$\end{document}, delta T, and DB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D_{B}$\end{document} increase along with the nanoparticles. However, it decreases when Delta C and SC increase. Elevations in DN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D_{N} $\end{document} are associated with increased densities of microorganisms. However, it drops when Pr, DT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D_{T}$\end{document}, and Pe increase. This study adds to the body of knowledge on bioconvection by addressing the interactions between nanoparticles and gyrotactic microorganisms in hybrid nanofluids and their previously unstudied consequences in a stagnation point flow setting, which make it novel and not discussed before.
引用
收藏
页数:28
相关论文
共 48 条
  • [1] MHD thin film flow of the Oldroyd-B fluid together with bioconvection and activation energy
    Ahmad, Farhan
    Gul, Taza
    Khan, Imran
    Saeed, Anwar
    Selim, Mahmoud Mohamed
    Kumam, Poom
    Ali, Ishtiaq
    [J]. CASE STUDIES IN THERMAL ENGINEERING, 2021, 27
  • [2] Ali A., 2021, International Journal of Applied and Computational Mathematics, V7, P208
  • [3] Significance of induced magnetic force for bioconvective transport of thixotropic nanofluid with variable thermal conductivity
    Almeshaal, Mohammed A.
    Palaniappan, Murugesan
    Kolsi, Lioua
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (25):
  • [4] Importance of multiple slips on bioconvection flow of cross nanofluid past a wedge with gyrotactic motile microorganisms
    Alshomrani, Ali Saleh
    Ullah, Malik Zaka
    Baleanu, Dumitru
    [J]. CASE STUDIES IN THERMAL ENGINEERING, 2020, 22
  • [5] Interaction of Wu's Slip Features in Bioconvection of Eyring Powell Nanoparticles with Activation Energy
    Alwatban, Anas M.
    Khan, Sami Ullah
    Waqas, Hassan
    Tlili, Iskander
    [J]. PROCESSES, 2019, 7 (11)
  • [6] Computation of Melting Dissipative Magnetohydrodynamic Nanofluid Bioconvection with Second-order Slip and Variable Thermophysical Properties
    Amirsom, Nur Ardiana
    Uddin, Md Jashim
    Basir, Md Faisal Md
    Kadir, Ali
    Beg, O. Anwar
    Ismail, Ahmad Izani Md
    [J]. APPLIED SCIENCES-BASEL, 2019, 9 (12):
  • [7] Impact of activation energy and MHD on Williamson fluid flow in the presence of bioconvection
    Asjad, Muhammad Imran
    Zahid, Muhammad
    Inc, Mustafa
    Baleanu, Dumitru
    Almohsen, Bandar
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (11) : 8715 - 8727
  • [8] Contributions of nonlinear mixed convection for enhancing the thermal efficiency of Eyring-Powell nanoparticles for periodically accelerated bidirectional flow
    Aziz, Samaira
    Ali, Nasir
    Ahmad, Iftikhar
    Alqsair, Umar F.
    Khan, Sami Ullah
    [J]. WAVES IN RANDOM AND COMPLEX MEDIA, 2022,
  • [9] Analysis of EN24 steel in turning process with copper nanofluids under minimum quantity lubrication
    Babu, M. Naresh
    Anandan, V.
    Muthukrishnan, N.
    [J]. JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2019, 41 (02)
  • [10] Applications of activation energy along with thermal and exponential space-based heat source in bioconvection assessment of magnetized third grade nanofluid over stretched cylinder/sheet
    Ben Henda, Mouna
    Waqas, Hassan
    Hussain, Mohib
    Khan, Sami Ullah
    Chammam, Wathek
    Khan, Shan Ali
    Tlili, Iskander
    [J]. CASE STUDIES IN THERMAL ENGINEERING, 2021, 26