Finite-Time Lyapunov Exponents for SPDEs with Fractional Noise

被引:1
作者
Neamtu, Alexandra Blessing [1 ]
Bloemker, Dirk [2 ]
机构
[1] Univ Konstanz, Dept Math & Stat, Univ Str 10, D-78464 Constance, Germany
[2] Univ Augsburg, Inst Math, Univ Str 12, D-86135 Augsburg, Germany
关键词
Fractional Brownian motion; Finite-time Lyapunov exponents; Amplitude equations; Bifurcations for SPDEs; RANDOM DYNAMICAL-SYSTEMS; BIFURCATION; EQUATIONS; DRIVEN; SDES;
D O I
10.1007/s00332-024-10123-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We estimate the finite-time Lyapunov exponents for a stochastic partial differential equation driven by a fractional Brownian motion (fbm) with Hurst index H is an element of(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\in (0,1)$$\end{document} close to a bifurcation of pitchfork type. We characterize regions depending on the distance from bifurcation, the Hurst parameter of the fbm and the noise strength where finite-time Lyapunov exponents are positive and thus indicate a change of stability. The results on finite-time Lyapunov exponents are novel also for SDEs perturbed by fractional noise.
引用
收藏
页数:31
相关论文
共 50 条
[41]   Finite-time stability for a class of fractional-order fuzzy neural networks with proportional delay [J].
Tyagi, Swati ;
Martha, S. C. .
FUZZY SETS AND SYSTEMS, 2020, 381 :68-77
[42]   New Methods of Finite-Time Synchronization for a Class of Fractional-Order Delayed Neural Networks [J].
Zhang, Weiwei ;
Cao, Jinde ;
Alsaedi, Ahmed ;
Alsaadi, Fuad E. .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
[43]   Some results on finite-time stability of stochastic fractional-order delay differential equations [J].
Luo, Danfeng ;
Tian, Mengquan ;
Zhu, Quanxin .
CHAOS SOLITONS & FRACTALS, 2022, 158
[44]   Existence of global and explosive mild solutions of fractional reaction-diffusion system of semilinear SPDEs with fractional noise [J].
Sankar, S. ;
Mohan, Manil T. ;
Karthikeyan, S. .
STOCHASTICS AND DYNAMICS, 2024, 24 (03)
[45]   Adaptive finite-time synchronization of fractional-order delayed fuzzy cellular neural networks [J].
Du, Feifei ;
Lu, Jun-Guo .
FUZZY SETS AND SYSTEMS, 2023, 466
[46]   An improved criterion on finite-time stability for fractional-order fuzzy cellular neural networks involving leakage and discrete delays [J].
Yang, Zhanying ;
Zhang, Jie ;
Zhang, Zhihui ;
Mei, Jun .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 203 :910-925
[47]   Survival exponents for fractional Brownian motion with multivariate time [J].
Molchan, George .
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2017, 14 (01) :1-7
[48]   VIBRATIONS OF A FINITE STRING UNDER A FRACTIONAL GAUSSIAN RANDOM NOISE [J].
Khalil, Zeina Mahdi ;
Tudor, Ciprian A. .
REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 66 (01) :191-208
[49]   MOMENT LYAPUNOV EXPONENTS AND STOCHASTIC STABILITY OF COUPLED VISCOELASTIC SYSTEMS DRIVEN BY WHITE NOISE [J].
Deng, Jian ;
Xie, Wei-Chau ;
Pandey, Mahesh D. .
JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2014, 9 (01) :27-50
[50]   MOMENTS AND ASYMPTOTICS FOR A CLASS OF SPDES WITH SPACE-TIME WHITE NOISE [J].
Chen, Le ;
Guo, Yuhui ;
Song, Jian .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (06) :4255-4301