Finite-Time Lyapunov Exponents for SPDEs with Fractional Noise

被引:1
作者
Neamtu, Alexandra Blessing [1 ]
Bloemker, Dirk [2 ]
机构
[1] Univ Konstanz, Dept Math & Stat, Univ Str 10, D-78464 Constance, Germany
[2] Univ Augsburg, Inst Math, Univ Str 12, D-86135 Augsburg, Germany
关键词
Fractional Brownian motion; Finite-time Lyapunov exponents; Amplitude equations; Bifurcations for SPDEs; RANDOM DYNAMICAL-SYSTEMS; BIFURCATION; EQUATIONS; DRIVEN; SDES;
D O I
10.1007/s00332-024-10123-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We estimate the finite-time Lyapunov exponents for a stochastic partial differential equation driven by a fractional Brownian motion (fbm) with Hurst index H is an element of(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\in (0,1)$$\end{document} close to a bifurcation of pitchfork type. We characterize regions depending on the distance from bifurcation, the Hurst parameter of the fbm and the noise strength where finite-time Lyapunov exponents are positive and thus indicate a change of stability. The results on finite-time Lyapunov exponents are novel also for SDEs perturbed by fractional noise.
引用
收藏
页数:31
相关论文
共 50 条
[31]   Existence of smooth stable manifolds for a class of parabolic SPDEs with fractional noise [J].
Lin, Xiaofang ;
Neamtu, Alexandra ;
Zeng, Caibin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (02)
[32]   THE EXISTENCE AND EXPONENTIAL BEHAVIOR OF SOLUTIONS TO TIME FRACTIONAL STOCHASTIC DELAY EVOLUTION INCLUSIONS WITH NONLINEAR MULTIPLICATIVE NOISE AND FRACTIONAL NOISE [J].
Li, Yajing ;
Wang, Yejuan .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (07) :2665-2697
[33]   Finite-time stability in measure for nabla uncertain discrete linear fractional order systems [J].
Lu, Qinyun ;
Zhu, Yuanguo .
MATHEMATICAL SCIENCES, 2024, 18 (01) :55-62
[34]   Finite-time synchronization and parameter identification of uncertain fractional-order complex networks [J].
Li, Hong-Li ;
Cao, Jinde ;
Jiang, Haijun ;
Alsaedi, Ahmed .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 533
[35]   Finite-time stability of linear fractional time-delay q-difference dynamical system [J].
Ma, Kuikui ;
Sun, Shurong .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2018, 57 (1-2) :591-604
[36]   Finite-Time Guaranteed Cost Control of Caputo Fractional-Order Neural Networks [J].
Thuan Mai Viet ;
Binh Tran Nguyen ;
Huong Dinh Cong .
ASIAN JOURNAL OF CONTROL, 2020, 22 (02) :696-705
[37]   SPDEs with affine multiplicative fractional noise in space with index 1/4 < H < 1/2 [J].
Balan, Raluca M. ;
Jolis, Maria ;
Quer-Sardanyons, Lluis .
ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 :1-36
[39]   A semi-analytical method for the computation of the Lyapunov exponents of fractional-order systems [J].
Caponetto, Riccardo ;
Fazzino, Stefano .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (01) :22-27
[40]   Global Synchronization in Finite-time of Fractional-order Complexvalued Delayed Hopfield Neural Networks [J].
Zhang, Xinxin ;
Niu, Peifeng ;
Liu, Nan ;
Li, Guoqiang .
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2019, 17 (02) :521-535