Finite-Time Lyapunov Exponents for SPDEs with Fractional Noise

被引:0
|
作者
Neamtu, Alexandra Blessing [1 ]
Bloemker, Dirk [2 ]
机构
[1] Univ Konstanz, Dept Math & Stat, Univ Str 10, D-78464 Constance, Germany
[2] Univ Augsburg, Inst Math, Univ Str 12, D-86135 Augsburg, Germany
关键词
Fractional Brownian motion; Finite-time Lyapunov exponents; Amplitude equations; Bifurcations for SPDEs; RANDOM DYNAMICAL-SYSTEMS; BIFURCATION; EQUATIONS; DRIVEN; SDES;
D O I
10.1007/s00332-024-10123-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We estimate the finite-time Lyapunov exponents for a stochastic partial differential equation driven by a fractional Brownian motion (fbm) with Hurst index H is an element of(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\in (0,1)$$\end{document} close to a bifurcation of pitchfork type. We characterize regions depending on the distance from bifurcation, the Hurst parameter of the fbm and the noise strength where finite-time Lyapunov exponents are positive and thus indicate a change of stability. The results on finite-time Lyapunov exponents are novel also for SDEs perturbed by fractional noise.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] Accelerated Monte Carlo Rendering of Finite-Time Lyapunov Exponents
    Rojo, Irene Baeza
    Gross, Markus
    Guenther, Tobias
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (01) : 708 - 718
  • [22] Finite-time Lyapunov exponents in time-delayed nonlinear dynamical systems
    Kanno, Kazutaka
    Uchida, Atsushi
    PHYSICAL REVIEW E, 2014, 89 (03):
  • [23] Statistics of finite-time Lyapunov exponents in a random time-dependent potential
    Schomerus, H
    Titov, M
    PHYSICAL REVIEW E, 2002, 66 (06): : 11
  • [24] Geometrical constraints on finite-time Lyapunov exponents in two and three dimensions
    Thiffeault, JL
    Boozer, AH
    CHAOS, 2001, 11 (01) : 16 - 28
  • [25] FINITE-TIME LYAPUNOV EXPONENTS IN MANY-DIMENSIONAL DYNAMICAL SYSTEMS
    Okushima, Teruaki
    GEOMETRIC STRUCTURES OF PHASE SPACE IN MULTIDIMENSIONAL CHAOS: APPLICATIONS TO CHEMICAL REACTION DYNAMICS IN COMPLEX SYSTEMS, PT B, 2005, 130 : 501 - +
  • [26] ON THE PROBABILITY OF POSITIVE FINITE-TIME LYAPUNOV EXPONENTS ON STRANGE NONCHAOTIC ATTRACTORS
    Remo, Flavia
    Fuhrmann, Gabriel
    Jaeger, Tobias
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (04) : 929 - 942
  • [27] Predictability of orbits in coupled systems through finite-time Lyapunov exponents
    Vallejo, Juan C.
    Sanjuan, Miguel A. F.
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [28] A set oriented definition of finite-time Lyapunov exponents and coherent sets
    Tallapragada, Phanindra
    Ross, Shane D.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (05) : 1106 - 1126
  • [29] Analysis of compressible free shear layers with finite-time Lyapunov exponents
    Gonzalez, David R.
    Gaitonde, Datta, V
    COMPUTERS & FLUIDS, 2018, 174 : 46 - 65
  • [30] Finite-time Lagrangian transport analysis: stable and unstable manifolds of hyperbolic trajectories and finite-time Lyapunov exponents
    Branicki, M.
    Wiggins, S.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2010, 17 (01) : 1 - 36