Finite-Time Lyapunov Exponents for SPDEs with Fractional Noise

被引:0
|
作者
Neamtu, Alexandra Blessing [1 ]
Bloemker, Dirk [2 ]
机构
[1] Univ Konstanz, Dept Math & Stat, Univ Str 10, D-78464 Constance, Germany
[2] Univ Augsburg, Inst Math, Univ Str 12, D-86135 Augsburg, Germany
关键词
Fractional Brownian motion; Finite-time Lyapunov exponents; Amplitude equations; Bifurcations for SPDEs; RANDOM DYNAMICAL-SYSTEMS; BIFURCATION; EQUATIONS; DRIVEN; SDES;
D O I
10.1007/s00332-024-10123-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We estimate the finite-time Lyapunov exponents for a stochastic partial differential equation driven by a fractional Brownian motion (fbm) with Hurst index H is an element of(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\in (0,1)$$\end{document} close to a bifurcation of pitchfork type. We characterize regions depending on the distance from bifurcation, the Hurst parameter of the fbm and the noise strength where finite-time Lyapunov exponents are positive and thus indicate a change of stability. The results on finite-time Lyapunov exponents are novel also for SDEs perturbed by fractional noise.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Bifurcation Theory for SPDEs: Finite-time Lyapunov Exponents and Amplitude Equations
    Bloemer, Dirk
    Neamtu, Alexandra
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2023, 22 (03): : 2150 - 2179
  • [2] Characteristic distributions of finite-time Lyapunov exponents
    Prasad, A
    Ramaswamy, R
    PHYSICAL REVIEW E, 1999, 60 (03): : 2761 - 2766
  • [3] LYAPUNOV EXPONENTS AND SYNCHRONISATION BY NOISE FOR SYSTEMS OF SPDES
    Gess, Benjamin
    Tsatsoulis, Pavlos
    ANNALS OF PROBABILITY, 2024, 52 (05): : 1903 - 1953
  • [4] Statistics of finite-time Lyapunov exponents in the Ulam map
    Anteneodo, C
    PHYSICAL REVIEW E, 2004, 69 (01): : 6
  • [5] A unified approach to finite-time hyperbolicity which extends finite-time Lyapunov exponents
    Doan, T. S.
    Karrasch, D.
    Nguyen, T. Y.
    Siegmund, S.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) : 5535 - 5554
  • [6] Backward Finite-Time Lyapunov Exponents in Inertial Flows
    Guenther, Tobias
    Theisel, Holger
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (01) : 970 - 979
  • [7] Finite-Time Lyapunov Exponents of Deep Neural Networks
    Storm, L.
    Linander, H.
    Bec, J.
    Gustavsson, K.
    Mehlig, B.
    PHYSICAL REVIEW LETTERS, 2024, 132 (05)
  • [8] Finite-Time Lyapunov Exponents for Products of Random Transformations
    Andrea Gamba
    Journal of Statistical Physics, 2003, 112 : 193 - 218
  • [9] Finite-time Lyapunov exponents for products of random transformations
    Gamba, A
    JOURNAL OF STATISTICAL PHYSICS, 2003, 112 (1-2) : 193 - 218
  • [10] New method for computing finite-time Lyapunov exponents
    Okushima, T
    PHYSICAL REVIEW LETTERS, 2003, 91 (25)