Advancements in corrected Euler-Maclaurin-type inequalities via conformable fractional integrals

被引:0
作者
Acar, Yaren [1 ]
Budak, Huseyin [1 ]
Bas, Umut [2 ]
Hezenci, Fatih [1 ]
Yildirim, Huseyin [2 ]
机构
[1] Duzce Univ, Fac Sci & Arts, Dept Math, TR-81620 Duzce, Turkiye
[2] Kahramanmaras Sutcu Imam Unyversyty, Fac Sci & Arts, Dept Math, TR-46100 Kahramanmaras, Turkiye
关键词
Quadrature formulae; Corrected Maclaurin's formula; Fractional calculus; Conformable fractional integrals;
D O I
10.1186/s13661-024-01990-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this research article, equality is proved to obtain corrected Euler-Maclaurin-type inequalities. Using this identity, we establish several corrected Euler-Maclaurin-type inequalities for the case of differentiable convex functions by means of conformable fractional integrals. Moreover, some corrected Euler-Maclaurin-type inequalities are given for bounded functions by fractional integrals. Additionally, fractional corrected Euler-Maclaurin-type inequalities are constructed for Lipschitzian functions. Finally, corrected Euler-Maclaurin-type inequalities are considered by fractional integrals of bounded variation.
引用
收藏
页数:30
相关论文
共 23 条
[1]  
[Anonymous], 2011, Nonlinear Stud
[2]  
Davis P.J., 1975, Methods of Numerical Integration
[3]  
Dedic L, 2003, MATH INEQUAL APPL, V6, P247
[4]  
Dragomir S.S., 1999, Tamkang J. Math, V30, P53
[5]   On Simpson's inequality and applications [J].
Dragomir, SS ;
Agarwal, RP ;
Cerone, P .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2000, 5 (06) :533-579
[6]   Some Newton's like inequalities with applications [J].
Erden, Samet ;
Iftikhar, Sabah ;
Kumam, Poom ;
Awan, Muhammad Uzair .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (04)
[7]  
Franji I., 2006, Nonlinear Stud, V13, P309
[8]   Corrected Euler-Maclaurin's formulae [J].
Franjić I. ;
Pečarić J. .
Rendiconti del Circolo Matematico di Palermo, 2005, 54 (2) :259-272
[9]  
Gao S., 2012, INT J PURE APPL MATH, V74, P33
[10]  
Gorenflo R, 1997, Fractional Calculus: Integral and Differential Equations of Fractional Order