Developmentally distinct architectures in top-down pathways controlling threat avoidance

被引:0
作者
Klune, Cassandra B. [1 ,2 ]
Goodpaster, Caitlin M. [1 ,2 ]
Gongwer, Michael W. [1 ,2 ,3 ]
Gabriel, Christopher J. [1 ,2 ]
An, Jennifer [1 ,2 ]
Chen, Rita [1 ]
Jones, Nico S. [1 ]
Williams, Owen H. [1 ]
Shari, Meelan [1 ]
Ramirez, Makayla [1 ]
Hacking, Aliza [1 ]
Andrade, Timothy [1 ]
Schwarz, Lindsay A. [4 ]
Denardo, Laura A. [1 ,5 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Physiol, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Neurosci Interdept Program, Los Angeles, CA USA
[3] Univ Calif Los Angeles, Med Scientist Training Program, Los Angeles, CA USA
[4] St Jude Childrens Res Hosp, Dept Dev Neurobiol, Memphis, TN USA
[5] Univ Calif Los Angeles, David Geffen Sch Med, Dept Neurobiol, Los Angeles, CA 90095 USA
基金
加拿大自然科学与工程研究理事会;
关键词
RISK-TAKING BEHAVIOR; PREFRONTAL CORTEX; ACTIVE-AVOIDANCE; ADOLESCENT BRAIN; AMYGDALA; AGE; STRESS; FEAR; EXPRESSION; PLASTICITY;
D O I
10.1038/s41593-025-01890-w
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The medial prefrontal cortex (mPFC) is critical for learning and decision-making processes, including responding to threats. The protracted maturation of the mPFC extends into early adulthood. Although prominent models suggest that increasing top-down control by the mPFC eventually allows adult behavioral repertoires to emerge, it is unclear how progressive strengthening can produce nonlinear behavioral changes observed across development. We use fiber photometry and optogenetics to establish causal links between frontolimbic pathway activity and threat avoidance strategies in juvenile, adolescent and adult mice. We uncover multiple developmental switches in the roles of mPFC pathways targeting the nucleus accumbens and basolateral amygdala. These changes are accompanied by axonal pruning, strengthening of synaptic connectivity and altered functional connectivity with downstream cell types, which occur in the mPFC-basolateral amygdala and mPFC-nucleus accumbens pathways at different rates. Our results reveal how developing mPFC pathways pass through distinct architectures that may make them optimally adapted to age-specific challenges.
引用
收藏
页码:823 / 835
页数:30
相关论文
共 56 条
  • [21] Ramsaran A.I., Schlichting M.L., Frankland P.W., The ontogeny of memory persistence and specificity, Dev. Cogn. Neurosci, 36, (2019)
  • [22] Bravo-Rivera C., Roman-Ortiz C., Montesinos-Cartagena M., Quirk G.J., Persistent active avoidance correlates with activity in prelimbic cortex and ventral striatum, Front. Behav. Neurosci, 9, (2015)
  • [23] Boeke E.A., Moscarello J.M., LeDoux J.E., Phelps E.A., Hartley C.A., Active avoidance: neural mechanisms and attenuation of Pavlovian conditioned responding, J. Neurosci, 37, pp. 4808-4818, (2017)
  • [24] Delgado M.R., Avoiding negative outcomes: tracking the mechanisms of avoidance learning in humans during fear conditioning, Front. Behav. Neurosci, 3, (2009)
  • [25] Kajs B.L., Loewke A.C., Dorsch J.M., Vinson L.T., Gunaydin L.A., Divergent encoding of active avoidance behavior in corticostriatal and corticolimbic projections, Sci. Rep, 12, (2022)
  • [26] Tovote P., Fadok J.P., Luthi A., Neuronal circuits for fear and anxiety, Nat. Rev. Neurosci, 16, pp. 317-331, (2015)
  • [27] Choi J.-S., Cain C.K., LeDoux J.E., The role of amygdala nuclei in the expression of auditory signaled two-way active avoidance in rats, Learn. Mem, 17, pp. 139-147, (2010)
  • [28] Nonaka A., Synaptic plasticity associated with a memory engram in the basolateral amygdala, J. Neurosci, 34, pp. 9305-9309, (2014)
  • [29] Gale G.D., Role of the basolateral amygdala in the storage of fear memories across the adult lifetime of rats, J. Neurosci, 24, pp. 3810-3815, (2004)
  • [30] Diehl M.M., Bravo-Rivera C., Quirk G.J., The study of active avoidance: a platform for discussion, Neurosci. Biobehav. Rev, 107, pp. 229-237, (2019)