Bootstrapping BI-RADS classification using large language models and transformers in breast magnetic resonance imaging reports

被引:1
作者
Liu, Yuxin [1 ,2 ]
Zhang, Xiang [3 ,4 ]
Cao, Weiwei [1 ,2 ]
Cui, Wenju [1 ,2 ,5 ]
Tan, Tao [6 ]
Peng, Yuqin [3 ,4 ]
Huang, Jiayi [3 ,4 ]
Lei, Zhen [7 ]
Shen, Jun [3 ,4 ]
Zheng, Jian [1 ,2 ,5 ]
机构
[1] Univ Sci & Technol China, Sch Biomed Engn Suzhou, Div Life Sci & Med, Hefei 230026, Anhui, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Med Imaging Dept, Suzhou 215163, Jiangsu, Peoples R China
[3] Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Dept Radiol, Guangzhou 510120, Guangdong, Peoples R China
[4] Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Guangdong Prov Key Lab Malignant Tumor Epigenet &, Med Res Ctr, Guangzhou 510120, Guangdong, Peoples R China
[5] Shandong Univ, Shandong Lab Adv Biomat & Med Devices Weihai, Weihai 264200, Shandong, Peoples R China
[6] Macao Polytech Univ, Fac Appl Sci, Macau, Peoples R China
[7] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Large language model; Structured report; Missing category information; Radiology report; CANCER; RISK;
D O I
10.1186/s42492-025-00189-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Breast cancer is one of the most common malignancies among women globally. Magnetic resonance imaging (MRI), as the final non-invasive diagnostic tool before biopsy, provides detailed free-text reports that support clinical decision-making. Therefore, the effective utilization of the information in MRI reports to make reliable decisions is crucial for patient care. This study proposes a novel method for BI-RADS classification using breast MRI reports. Large language models are employed to transform free-text reports into structured reports. Specifically, missing category information (MCI) that is absent in the free-text reports is supplemented by assigning default values to the missing categories in the structured reports. To ensure data privacy, a locally deployed Qwen-Chat model is employed. Furthermore, to enhance the domain-specific adaptability, a knowledge-driven prompt is designed. The Qwen-7B-Chat model is fine-tuned specifically for structuring breast MRI reports. To prevent information loss and enable comprehensive learning of all report details, a fusion strategy is introduced, combining free-text and structured reports to train the classification model. Experimental results show that the proposed BI-RADS classification method outperforms existing report classification methods across multiple evaluation metrics. Furthermore, an external test set from a different hospital is used to validate the robustness of the proposed approach. The proposed structured method surpasses GPT-4o in terms of performance. Ablation experiments confirm that the knowledge-driven prompt, MCI, and the fusion strategy are crucial to the model's performance.
引用
收藏
页数:16
相关论文
共 60 条
[1]   Leveraging GPT-4 for Post Hoc Transformation of Free-text Radiology Reports into Structured Reporting: A Multilingual Feasibility Study [J].
Adams, Lisa C. ;
Truhn, Daniel ;
Busch, Felix ;
Kader, Avan ;
Niehues, Stefan M. ;
Makowski, Marcus R. ;
Bressem, Keno K. .
RADIOLOGY, 2023, 307 (04)
[2]   Approach to machine learning for extraction of real-world data variables from electronic health records [J].
Adamson, Blythe ;
Waskom, Michael ;
Blarre, Auriane ;
Kelly, Jonathan ;
Krismer, Konstantin ;
Nemeth, Sheila ;
Gippetti, James ;
Ritten, John ;
Harrison, Katherine ;
Ho, George ;
Linzmayer, Robin ;
Bansal, Tarun ;
Wilkinson, Samuel ;
Amster, Guy ;
Estola, Evan ;
Benedum, Corey M. ;
Fidyk, Erin ;
Estevez, Melissa ;
Shapiro, Will ;
Cohen, Aaron B. .
FRONTIERS IN PHARMACOLOGY, 2023, 14
[3]  
Alsentzer E, 2019, Arxiv, DOI [arXiv:1904.03323, 10.48550/arXiv.1904.03323, DOI 10.48550/ARXIV.1904.03323]
[4]  
[Anonymous], 2022, OpenAI
[5]  
Bai JZ, 2023, Arxiv, DOI [arXiv:2309.16609, 10.48550/arXiv.2309.16609, DOI 10.48550/ARXIV.2309.16609]
[6]   Comparative effectiveness of convolutional neural network (CNN) and recurrent neural network (RNN) architectures for radiology text report classification [J].
Banerjee, Imon ;
Ling, Yuan ;
Chen, Matthew C. ;
Hasan, Sadid A. ;
Langlotz, Curtis P. ;
Moradzadeh, Nathaniel ;
Chapman, Brian ;
Amrhein, Timothy ;
Mong, David ;
Rubin, Daniel L. ;
Farri, Oladimeji ;
Lungren, Matthew P. .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2019, 97 :79-88
[7]   Breast Cancer Risk Assessment and Primary Prevention Advice in Primary Care: A Systematic Review of Provider Attitudes and Routine Behaviours [J].
Bellhouse, Sarah ;
Hawkes, Rhiannon E. ;
Howell, Sacha J. ;
Gorman, Louise ;
French, David P. .
CANCERS, 2021, 13 (16)
[8]   Large Language Models for Automated Synoptic Reports and Resectability Categorization in Pancreatic Cancer [J].
Bhayana, Rajesh ;
Nanda, Bipin ;
Dehkharghanian, Taher ;
Deng, Yangqing ;
Bhambra, Nishaant ;
Elias, Gavin ;
Datta, Daksh ;
Kambadakone, Avinash ;
Shwaartz, Chaya G. ;
Moulton, Carol-Anne ;
Henault, David ;
Gallinger, Steven ;
Krishna, Satheesh .
RADIOLOGY, 2024, 311 (03)
[9]  
Brown TB, 2020, ADV NEUR IN, V33
[10]   Evaluating the ChatGPT family of models for biomedical reasoning and classification [J].
Chen, Shan ;
Li, Yingya ;
Lu, Sheng ;
Van, Hoang ;
Aerts, Hugo J. W. L. ;
Savova, Guergana K. ;
Bitterman, Danielle S. .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024, 31 (04) :940-948