Graphs with Large Steiner Number

被引:0
|
作者
John, J. [1 ]
Raj, M. S. Malchijah [2 ]
机构
[1] Govt Coll Engn, Dept Math, Tirunelveli, India
[2] Saveetha Univ, Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Math, Chennai, Tamil Nadu, India
关键词
GEODETIC NUMBER; ANALOGIES;
D O I
10.1007/s11253-024-02354-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 2002, G. Chartrand and P. Zhang [Discrete Math., 242, 4 (2002)] characterized the connected graphs G of order p >= 3 with Steiner number p, p - 1, or 2. We characterize all connected graphs G of order p >= 4 with Steiner number s(G) = p - 2. In addition, we obtain some sharp Nordhaus-Gaddum bounds for the Steiner number of connected graphs whose complement is also connected.
引用
收藏
页码:805 / 815
页数:11
相关论文
共 50 条
  • [1] A note on the geodetic number and the Steiner number of AT-free graphs
    Hon, Wing-Kai
    Kloks, Ton
    Liu, Hsiang-Hsuan
    Wang, Hung-Lung
    Wang, Yue-Li
    THEORETICAL COMPUTER SCIENCE, 2021, 854 : 131 - 135
  • [2] Comment on "Analogies Between the Geodetic Number and the Steiner Number of Some Classes of Graphs"
    John, J.
    FILOMAT, 2023, 37 (02) : 585 - 589
  • [3] Graphs with Large Geodetic Number
    Ahangar, Hossein Abdollahzadeh
    Kosari, Saeed
    Sheikholeslami, Seyed Mahmoud
    Volkmann, Lutz
    FILOMAT, 2015, 29 (06) : 1361 - 1368
  • [4] Graphs with Large Total Geodetic Number
    Ahangar, Hossein Abdollahzadeh
    FILOMAT, 2017, 31 (13) : 4297 - 4304
  • [5] EXTREME STEINER GRAPHS
    Santhakumaran, A. P.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2012, 4 (02)
  • [6] The Steiner number of a graph
    Chartrand, G
    Zhang, P
    DISCRETE MATHEMATICS, 2002, 242 (1-3) : 41 - 54
  • [7] The edge Steiner number of a graph
    Santhakumaran, A. P.
    John, J.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2007, 10 (05) : 677 - 696
  • [8] On the Steiner, geodetic and hull numbers of graphs
    Hernando, C
    Jiang, T
    Mora, M
    Pelayo, IM
    Seara, C
    DISCRETE MATHEMATICS, 2005, 293 (1-3) : 139 - 154
  • [9] Steiner intervals and Steiner geodetic numbers in distance-hereditary graphs
    Oellermann, Ortrud R.
    Puertas, Maria Luz
    DISCRETE MATHEMATICS, 2007, 307 (01) : 88 - 96
  • [10] Geodetic and Steiner geodetic sets in 3-Steiner distance hereditary graphs
    Eroh, Linda
    Oellermann, Ortrud R.
    DISCRETE MATHEMATICS, 2008, 308 (18) : 4212 - 4220