Comparison of exterior power operations on higher K-theory of schemes

被引:0
作者
Kock, Bernhard [1 ]
Zanchetta, Ferdinando [2 ]
机构
[1] Univ Southampton, Sch Math Sci, Southampton SO17 1BJ, England
[2] Univ Bologna, FABIT, Via San Donato 15, I-40127 Bologna, Italy
关键词
A(1)-HOMOTOPY;
D O I
10.1007/s00209-025-03681-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Exterior power operations provide an additional structure on K-groups of schemes which lies at the heart of Grothendieck's Riemann-Roch theory. Over the past decades, various authors have constructed such operations on higher K-theory. In this paper, we prove that these constructions actually yield the same operations, ultimately matching up the explicit combinatorial description by Harris, the first author and Taelman on the one hand and the recent, conceptually clear-cut construction by Barwick, Glasman, Mathew and Nikolaus on the other hand. This also leads to the proof of a conjecture by the first author about composition of these operations in the equivariant context, completing the proof that higher equivariant K-groups satisfy all axioms of a lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-ring.
引用
收藏
页数:28
相关论文
共 37 条
[1]  
[Anonymous], 1997, Fields Inst. Commun
[2]  
[Anonymous], 1999, P S PURE MATH
[3]  
[Anonymous], 2015, New Mathematical Monographs
[4]  
[Anonymous], 1992, Chicago Lectures in Math.
[5]   AFFINE REPRESENTABILITY RESULTS IN A1-HOMOTOPY THEORY, I: VECTOR BUNDLES [J].
Asok, Aravind ;
Hoyois, Marc ;
Wendt, Matthias .
DUKE MATHEMATICAL JOURNAL, 2017, 166 (10) :1923-1953
[6]  
Barwick C, 2022, Arxiv, DOI arXiv:2102.00936
[7]  
Berthelot P., 1971, LECT NOTES MATH, V225
[8]  
Dold A., 1961, Universite de Grenoble. Annales de l'Institut Fourier, V11, P201
[9]  
Fulton W., 1985, GRUNDLEHREN MATH WIS, V277
[10]   THE LOOP SPACE OF THE Q-CONSTRUCTION [J].
GILLET, H ;
GRAYSON, DR .
ILLINOIS JOURNAL OF MATHEMATICS, 1987, 31 (04) :574-597