Existence of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Robust Weak Nash Equilibria for Leader–Follower Population Games with Fuzzy Parameters

被引:0
作者
Guoling Wang [1 ]
Miao Wang [1 ]
Hui Yang [1 ]
Guanghui Yang [1 ]
Chun Wang [2 ]
机构
[1] Guizhou University,Guizhou Provincial Key Laboratory for Games Decision
[2] Guizhou Open University,Making and Control System, School of Mathematics and Statistics
关键词
Leader–follower population games; Fuzzy parameters; Existence; -robust weak Nash equilibria; Set optimization; 91A10; 91A13; 03E72; 49K99;
D O I
10.1007/s10957-024-02534-y
中图分类号
学科分类号
摘要
This paper mainly studies the existence of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-robust weak Nash equilibria for leader-follower population games with fuzzy parameters. First, α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-robust weak Nash equilibria for population games with fuzzy parameters are defined based on u-type set relations and their existence is proved by Fan-Glicksberg fixed theorem. Second, such equilibrium solutions are further proposed for leader-follower population games with fuzzy parameters and their existence is further shown. Finally, four examples are constructed to illustrate their feasibility, respectively. Our results are new and different from the existing ones.
引用
收藏
页码:2739 / 2758
页数:19
相关论文
共 50 条