Viscosity Solutions of a Class of Second Order Hamilton-Jacobi-Bellman Equations in the Wasserstein Space

被引:1
作者
Cheung, Hang [1 ]
Tai, Ho Man [2 ]
Qiu, Jinniao [1 ]
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB, Canada
[2] Dublin City Univ, Sch Math Sci, Dublin, Ireland
基金
加拿大自然科学与工程研究理事会;
关键词
Mean field type control; Wasserstein space; HJB equation; Viscosity solutions; Bellman equation; Comparison theorem; Ekeland's variational principle; MASTER-EQUATIONS;
D O I
10.1007/s00245-025-10219-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to solving a class of second order Hamilton-Jacobi-Bellman (HJB) equations in the Wasserstein space, associated with mean field control problems involving common noise. The well-posedness of viscosity solution to the HJB equation under a new notion is established under general assumptions on the coefficients. Our approach adopts the smooth metric developed by Bayraktar et al. (Proc Am Math Soc 151(09):4089-4098, 2023) as our gauge function for the purpose of smooth variational principle used in the proof of comparison theorem. Further estimates and regularity of the metric, including a novel second order derivative estimate with respect to the measure variable, are derived in order to ensure the uniqueness and existence.
引用
收藏
页数:61
相关论文
共 44 条
  • [1] A Maximum Principle for SDEs of Mean-Field Type
    Andersson, Daniel
    Djehiche, Boualem
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2011, 63 (03) : 341 - 356
  • [2] Bayraktar E, 2025, Arxiv, DOI arXiv:2408.06013
  • [3] Bayraktar E, 2024, Arxiv, DOI arXiv:2309.05040
  • [4] Mean Field Control and Finite Agent Approximation for Regime-Switching Jump Diffusions
    Bayraktar, Erhan
    Cecchin, Alekos
    Chakraborty, Prakash
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 88 (02)
  • [5] A SMOOTH VARIATIONAL PRINCIPLE ON WASSERSTEIN SPACE
    Bayraktar, Erhan
    Ekren, Ibrahim
    Zhang, Xin
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (09) : 4089 - 4098
  • [6] RANDOMIZED DYNAMIC PROGRAMMING PRINCIPLE AND FEYNMAN-KAC REPRESENTATION FOR OPTIMAL CONTROL OF MCKEAN-VLASOV DYNAMICS
    Bayraktar, Erhan
    Cosso, Andrea
    Pham, Huyen
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (03) : 2115 - 2160
  • [7] Bensoussan A, 2013, SPRINGERBRIEF MATH, P1, DOI 10.1007/978-1-4614-8508-7
  • [8] Bensoussan A, 2023, Arxiv, DOI arXiv:2305.04019
  • [9] Bensoussan A, 2023, Arxiv, DOI arXiv:2305.11848
  • [10] A General Stochastic Maximum Principle for SDEs of Mean-field Type
    Buckdahn, Rainer
    Djehiche, Boualem
    Li, Juan
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2011, 64 (02) : 197 - 216