Microstructural and biological characterization of 3D printed PEEK scaffolds coated with alginate/CNT for bone regeneration applications

被引:0
|
作者
Afshin Fatemi [1 ]
Farid Reza Biglari [1 ]
机构
[1] Department of Mechanical Engineering, Amirkabir University of Technology, 424 Hafez Ave., Tehran
来源
Discover Mechanical Engineering | / 3卷 / 1期
关键词
3D printing; Alginate; Bioactivity; Biocompatibility; Carbon nanotubes (CNT); Polyether ether ketone; Scaffold architecture;
D O I
10.1007/s44245-024-00070-7
中图分类号
学科分类号
摘要
The main aim of bone tissue engineering is to develop novel scaffold structures that integrate biological functionality with sufficient mechanical strength and properties. In this study, bone scaffolds were fabricated using polyether ether ketone (PEEK) via 3D printing, resulting in three different porous designs. To enhance their biological attributes, these scaffolds were coated with an alginate and carbon nanotube (CNT) composite using a freeze-drying technique. The biological characteristics of fabricated samples, such as biocompatibility and bioactivity, were evaluated in simulated body fluid (SBF). Field emission scanning electron microscopy (FE-SEM) analysis showed that the 3D-printed PEEK scaffolds had a porous, uniform, and interconnected architecture with pore sizes between 321–378 µm. Energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) confirmed the formation of hydroxyapatite (HA) and bioactive calcium phosphate (Ca-P) on the scaffold surfaces, indicating their bioactivity. Cell biocompatibility was assessed using the MTT assay, which revealed a high cell viability rate of approximately 97% and no significant toxicity. Consequently, the 3D-printed PEEK scaffold coated with Alginate/0.3%wt CNT demonstrated promising microstructure, bioactivity, and biocompatibility, making it suitable for bone tissue regeneration. Graphical abstract: (Figure presented.) © The Author(s) 2024.
引用
收藏
相关论文
共 50 条
  • [1] Characterization of 3D printed biodegradable piezoelectric scaffolds for bone regeneration
    Karanth, Divakar
    Puleo, David
    Dawson, Dolph
    Holliday, L. S.
    Sharab, Lina
    CLINICAL AND EXPERIMENTAL DENTAL RESEARCH, 2023, 9 (02): : 398 - 408
  • [2] In vitro characterization of 3D printed scaffolds aimed at bone tissue regeneration
    Boga, Joao C.
    Miguel, Sonia P.
    de Melo-Diogo, Duarte
    Mendonca, Antonio G.
    Louro, Ricardo O.
    Correia, Ilidio J.
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2018, 165 : 207 - 218
  • [3] Novel 3D printed alginate-BFP1 hybrid scaffolds for enhanced bone regeneration
    Heo, Eun Young
    Ko, Na Re
    Bae, Min Soo
    Lee, Sang Jin
    Choi, Byung-Joon
    Kim, Jung Ho
    Kim, Hyung Keun
    Park, Su A.
    Kwon, Ii Keun
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2017, 45 : 61 - 67
  • [4] Novel 3D printed TPMS scaffolds: microstructure, characteristics and applications in bone regeneration
    Ma, Jiaqi
    Li, Yumeng
    Mi, Yujing
    Gong, Qiannan
    Zhang, Pengfei
    Meng, Bing
    Wang, Jue
    Wang, Jing
    Fan, Yawei
    JOURNAL OF TISSUE ENGINEERING, 2024, 15
  • [5] 3D printed magnetoactive nanocomposite scaffolds for bone regeneration
    Kaviani, Yeganeh
    Eslami, Hossein
    Ansari, Mojtaba
    Poursamar, Seyed Ali
    BIOMEDICAL MATERIALS, 2025, 20 (01)
  • [6] Bone Regeneration Capability of 3D Printed Ceramic Scaffolds
    Kim, Ju-Won
    Yang, Byoung-Eun
    Hong, Seok-Jin
    Choi, Hyo-Geun
    Byeon, Sun-Ju
    Lim, Ho-Kyung
    Chung, Sung-Min
    Lee, Jong-Ho
    Byun, Soo-Hwan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (14) : 1 - 13
  • [7] Physico-biological evaluation of 3D printed dECM/TOCN/alginate hydrogel based scaffolds for cartilage tissue regeneration
    Shanto, Prayas Chakma
    Park, Seongsu
    Park, Myeongki
    Lee, Byong-Taek
    BIOMATERIALS ADVANCES, 2023, 145
  • [8] Biofabrication of 3D printed hydroxyapatite composite scaffolds for bone regeneration
    Kim, Yoontae
    Lee, Eun-Jin
    Davydov, Albert, V
    Frukhtbeyen, Stanislav
    Seppala, Jonathan E.
    Takagi, Shozo
    Chow, Laurence
    Alimperti, Stella
    BIOMEDICAL MATERIALS, 2021, 16 (04)
  • [9] 3D Printed Fe Scaffolds with HA Nanocoating for Bone Regeneration
    Yang, Chen
    Huan, Zhiguang
    Wang, Xiaoya
    Wu, Chengtie
    Chang, Jiang
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2018, 4 (02): : 608 - 616
  • [10] Fabrication and finite element simulation of antibacterial 3D printed Poly L-lactic acid scaffolds coated with alginate/magnesium oxide for bone tissue regeneration
    Angili, Sajad Niazi
    Morovvati, Mohammad Reza
    Kardan-Halvaei, Mostafa
    Saber-Samandari, Saeed
    Razmjooee, Kavoos
    Abed, Azher M.
    Toghraie, Davood
    Khandan, Amirsalar
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 224 : 1152 - 1165