Comparative tracking of Turbinaria conoides and Gelidium elegans for enhanced bioethanol production

被引:0
作者
Ravichandran, M. [2 ]
Merlin, A. D. [3 ]
Muthulaxmi, V. [3 ]
Sowndariya, M. [3 ]
Kumar, T. T. Ajith [4 ]
Manoharadas, S. [5 ]
Ahmad, N. [6 ]
Wahab, R. [7 ]
Tamimi, J. A., I [7 ]
Dineshkumar, R. [1 ]
机构
[1] Saveetha Univ, Saveetha Med Coll & Hosp, Saveetha Inst Med & Tech Sci SIMATS, Ctr Global Hlth Res, Chennai 602105, Tamil Nadu, India
[2] Vivekanandha Arts & Sci Coll Women, Dept Microbiol, Salem 637303, Tamil Nadu, India
[3] Karpagam Acad Higher Educ, Dept Microbiol, Coimbatore, Tamil Nadu, India
[4] ICAR Natl Bur Fish Genet Resources, Lucknow 226002, India
[5] King Saud Univ, Dept Bot & Microbiol, Coll Sci, POB 2454, Riyadh 11451, Saudi Arabia
[6] King Saud Univ, Coll Sci, Dept Chem, POB 2454, Riyadh 11451, Saudi Arabia
[7] King Saud Univ, Dept Zool, Coll Sci, POB 2454, Riyadh 11451, Saudi Arabia
关键词
Bioethanol; Gelidium elegans; Seaweed; Turbinaria conoides; Gas chromatography-mass spectroscopy; Nuclear magnetic resonance; ETHANOL-PRODUCTION; BIOGAS PRODUCTION; SEAWEED; PRETREATMENT; CULTIVATION; HYDROLYSIS; MACROALGAE;
D O I
10.1007/s13762-024-06154-x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, Turbinaria conoides and Gelidium elegans were evaluated for their potential in bioethanol production. The process involved breaking down the cellulose in these seaweeds into glucose, which was then fermented by Saccharomyces cerevisiae to produce ethanol. The glucose and ethanol yields for T. conoides were 4.3 g kg(-1) and 2.8 g g(-1), respectively, while G. elegans demonstrated higher yields of 9.8 g kg(-1) and 5.2 g g(-1). To optimize the saccharification conditions, various operational factors including temperature, acid concentration, and incubation time were explored to maximize sugar detection. The optimal conditions for T. conoides were identified as 7.5% w/v H2SO4 at 140 degrees C for 45 min, achieving 41.8% dry weight (DW) sugar yield. In contrast, G. elegans achieved a higher sugar yield of 48.5% DW under conditions of 10% w/v H2SO4 at 140 degrees C for 60 min of incubation. Following saccharification, the biomass was subjected to hydrolysis and fermentation, with G. elegans yielding a maximum ethanol concentration of 14.13 gL(-1) in less than 60 h. To confirm the presence of bioethanol, Gas Chromatography-Mass Spectroscopy (GC-MS) analysis was performed, identifying and quantifying the bioethanol compounds. Additionally, Nuclear Magnetic Resonance spectroscopy was employed to verify the structural composition of the bioethanol. The results of this research indicate that bioethanol production from seaweed, particularly G. elegans, is a feasible and promising alternative energy source. G. elegans showed especially favorable results in terms of yield and efficiency. As a renewable and carbon-neutral energy source, bioethanol from these seaweeds could play a pivotal role in future energy systems, contributing to global efforts in mitigating climate change and reducing fossil fuel dependence. This study opens new avenues for research and commercial bioethanol production from marine biomass, fostering a more sustainable and eco-friendly energy future.
引用
收藏
页码:7179 / 7196
页数:18
相关论文
共 82 条
  • [11] Bioethanol production from the macroalgae Sargassum spp.
    Borines, Myra G.
    de Leon, Rizalinda L.
    Cuello, Joel L.
    [J]. BIORESOURCE TECHNOLOGY, 2013, 138 : 22 - 29
  • [12] Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products
    Brennan, Liam
    Owende, Philip
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (02) : 557 - 577
  • [13] Bioethanol Production from Lignocellulosic Biomass-Challenges and Solutions
    Broda, Magdalena
    Yelle, Daniel J.
    Serwanska, Katarzyna
    [J]. MOLECULES, 2022, 27 (24):
  • [14] Current progress on lignocellulosic bioethanol including a technological and economical perspective
    Ceaser, Regan
    Montane, Daniel
    Constanti, Magda
    Medina, Francesc
    [J]. ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2024,
  • [15] Macroalgae for biofuels production: Progress and perspectives
    Chen, Huihui
    Zhou, Dong
    Luo, Gang
    Zhang, Shicheng
    Chen, Jianmin
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 47 : 427 - 437
  • [16] Chiaramonti D., 2007, Improvement of Crop Plants for Industrial End Uses
  • [17] Chemical composition and ethanol production potential of Thai seaweed species
    Chirapart, Anong
    Praiboon, Jantana
    Puangsombat, Pongsatorn
    Pattanapon, Chutima
    Nunraksa, Nattawarit
    [J]. JOURNAL OF APPLIED PHYCOLOGY, 2014, 26 (02) : 979 - 986
  • [18] Bioethanol production from microalgae biomass at high-solids loadings
    Condor, Billriz E.
    de Luna, Mark Daniel G.
    Chen, Yu-Han
    Chen, Jih-Heng
    Leong, Yoong Kit
    Chen, Po-Ting
    Chen, Chun-Yen
    Lee, Duu-Jong
    Chang, Jo-Shu
    [J]. BIORESOURCE TECHNOLOGY, 2022, 363
  • [19] Electricity generation and microalgae cultivation in microbial fuel cell using microalgae-enriched anode and bio-cathode
    Cui, Yufeng
    Rashid, Naim
    Hu, Naixu
    Rehman, Muhammad Saif Ur
    Han, Jong-In
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2014, 79 : 674 - 680
  • [20] Cunha de Castro George Meredite, 2017, Acta Scientiarum Biological Sciences, V39, P423, DOI 10.4025/actascibiolsci.v39i4.37227