A frequency attention-embedded network for polyp segmentation

被引:1
作者
Tang, Rui [1 ]
Zhao, Hejing [2 ,3 ]
Tong, Yao [4 ,5 ]
Mu, Ruihui [6 ]
Wang, Yuqiang [1 ]
Zhang, Shuhao [1 ]
Zhao, Yao [1 ]
Wang, Weidong [1 ]
Zhang, Min [1 ]
Liu, Yilin [1 ]
Gao, Jianbo [7 ]
机构
[1] Zhengzhou Univ, Affiliated Hosp 1, Dept Orthoped, Zhengzhou 450000, Peoples R China
[2] China Inst Water Resources & Hydropower Res, Res Ctr Flood & Drought Disaster Reduct Minist Wat, Beijing 100038, Peoples R China
[3] China Inst Water Resources & Hydropower Res, Water Hist Dept, Beijing 100038, Peoples R China
[4] Nanjing Univ Chinese Med, Sch Artificial Intelligence & Informat Technol, Nanjing 210023, Peoples R China
[5] Nanjing Univ Chinese Med, Jiangsu Prov Engn Res Ctr TCM Intelligence Hlth Se, Nanjing 210023, Peoples R China
[6] Xinxiang Univ, Coll Comp & Informat, Xinxiang 453000, Peoples R China
[7] Zhengzhou Univ, Affiliated Hosp 1, Dept Radiol, Zhengzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Polyp segmentation; U-Net; attention mechanism; PLUS PLUS; IMAGE;
D O I
10.1038/s41598-025-88475-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gastrointestinal polyps are observed and treated under endoscopy, so there presents significant challenges to advance endoscopy imaging segmentation of polyps. Current methodologies often falter in distinguishing complex polyp structures within diverse (mucosal) tissue environments. In this paper, we propose the Frequency Attention-Embedded Network (FAENet), a novel approach leveraging frequency-based attention mechanisms to enhance polyp segmentation accuracy significantly. FAENet ingeniously segregates and processes image data into high and low-frequency components, enabling precise delineation of polyp boundaries and internal structures by integrating intra-component and cross-component attention mechanisms. This method not only preserves essential edge details but also refines the learned representation attentively, ensuring robust segmentation across varied imaging conditions. Comprehensive evaluations on two public datasets, Kvasir-SEG and CVC-ClinicDB, demonstrate FAENet's superiority over several state-of-the-art models in terms of Dice coefficient, Intersection over Union (IoU), sensitivity, and specificity. The results affirm that FAENet's advanced attention mechanisms significantly improve the segmentation quality, outperforming traditional and contemporary techniques. FAENet's success indicates its potential to revolutionize polyp segmentation in clinical practices, fostering diagnosis and efficient treatment of gastrointestinal polyps.
引用
收藏
页数:10
相关论文
共 50 条
[1]  
Akbari M, 2018, IEEE ENG MED BIO, P69, DOI 10.1109/EMBC.2018.8512197
[2]   Re-Routing Drugs to Blood Brain Barrier: A Comprehensive Analysis of Machine Learning Approaches With Fingerprint Amalgamation and Data Balancing [J].
Ansari, Mohammed Yusuf ;
Chandrasekar, Vaisali ;
Singh, Ajay Vikram ;
Dakua, Sarada Prasad .
IEEE ACCESS, 2023, 11 :9890-9906
[3]   Aerial LaneNet: Lane-Marking Semantic Segmentation in Aerial Imagery Using Wavelet-Enhanced Cost-Sensitive Symmetric Fully Convolutional Neural Networks [J].
Azimi, Seyed Majid ;
Fischer, Peter ;
Koerner, Marco ;
Reinartz, Peter .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (05) :2920-2938
[4]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[5]   Towards automatic polyp detection with a polyp appearance model [J].
Bernal, J. ;
Sanchez, J. ;
Vilarino, F. .
PATTERN RECOGNITION, 2012, 45 (09) :3166-3182
[6]  
Cao Hu, 2023, Computer Vision - ECCV 2022 Workshops: Proceedings. Lecture Notes in Computer Science (13803), P205, DOI 10.1007/978-3-031-25066-8_9
[7]   Investigating the Use of Machine Learning Models to Understand the Drugs Permeability Across Placenta [J].
Chandrasekar, Vaisali ;
Ansari, Mohammed Yusuf ;
Singh, Ajay Vikram ;
Uddin, Shahab ;
Prabhu, Kirthi S. ;
Dash, Sagnika ;
Khodor, Souhaila Al ;
Terranegra, Annalisa ;
Avella, Matteo ;
Dakua, Sarada Prasad .
IEEE ACCESS, 2023, 11 :52726-52739
[8]   ResGANet: Residual group attention network for medical image classification and segmentation [J].
Cheng, Junlong ;
Tian, Shengwei ;
Yu, Long ;
Gao, Chengrui ;
Kang, Xiaojing ;
Ma, Xiang ;
Wu, Weidong ;
Liu, Shijia ;
Lu, Hongchun .
MEDICAL IMAGE ANALYSIS, 2022, 76
[9]   LV Contour Extraction from Cardiac MR Images Using Random Walks Approach [J].
Dakua, S. P. ;
Sahambi, J. S. .
2009 IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE, VOLS 1-3, 2009, :228-233
[10]   Detection of Left Ventricular Myocardial Contours from Ischemic Cardiac MR Images [J].
Dakua, Sarada Prasad ;
Sahambi, J. S. .
IETE JOURNAL OF RESEARCH, 2011, 57 (04) :372-384