On Holomorphic Tubular Neighborhoods of Compact Riemann Surfaces

被引:0
作者
Ogawa, Satoshi [1 ]
机构
[1] Osaka Metropolitan Univ, Grad Sch Sci, Dept Math, 3-3-138 Sugimoto,Sumiyoshi ku, Osaka 5588585, Japan
关键词
Holomorphic tubular neighborhoods; Brjuno condition; Small divisor;
D O I
10.1007/s12220-024-01841-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be a smooth compact Riemann surface holomorphically embedded in a non-singular complex surface M with the unitary flat line bundle NC/M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{C/M}$$\end{document}. We give a sufficient condition for the existence on a holomorphic tubular neighborhood of C in M. Our sufficient condition is described by an arithmetical condition of NC/M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{C/M}$$\end{document} in Pic0(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Pic}<^>0(C)$$\end{document} which can be regarded as an analogue of the Brjuno condition for irrational numbers which appears in the theory of 1-variable complex dynamics.
引用
收藏
页数:19
相关论文
共 21 条
[11]  
Hwang J.-M., 2019, ANN MATH, V189, P979, DOI DOI 10.4007/annals.2019.189.3.8
[12]   A THEOREM OF COMPLETENESS OF CHARACTERISTIC SYSTEMS OF COMPLETE CONTINUOUS SYSTEMS [J].
KODAIRA, K ;
SPENCER, DC .
AMERICAN JOURNAL OF MATHEMATICS, 1959, 81 (02) :477-500
[13]  
Kodaira K., 2005, Complex Manifolds and Deformation of Complex Structures, DOI DOI 10.1007/B138372
[14]  
Koike T., On the Borel summability of WKB solutions of Schrodinger equations with rational potentials and its application
[15]   Almost K3 surface contains infinitely many linear Levi-flat hypersurfaces br [J].
Lequen, Felix .
JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2023, 10 :815-836
[16]   The Brjuno functions and their regularity properties [J].
Marmi, S ;
Moussa, P ;
Yoccoz, JC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (02) :265-293
[17]  
Savalev VI., 1982, Vestnik Moskov. Univ. Serv., V1
[18]   Iteration of analytic functions [J].
Siegel, CL .
ANNALS OF MATHEMATICS, 1942, 43 :607-612
[19]   COMPLEX STRUCTURES ON S3XS3 [J].
TSUJI, H .
TOHOKU MATHEMATICAL JOURNAL, 1984, 36 (03) :351-376
[20]   ON THE NEIGHBORHOOD OF A COMPACT COMPLEX CURVE WITH TOPOLOGICALLY TRIVIAL NORMAL BUNDLE [J].
UEDA, T .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1983, 22 (04) :583-607