On Holomorphic Tubular Neighborhoods of Compact Riemann Surfaces

被引:0
作者
Ogawa, Satoshi [1 ]
机构
[1] Osaka Metropolitan Univ, Grad Sch Sci, Dept Math, 3-3-138 Sugimoto,Sumiyoshi ku, Osaka 5588585, Japan
关键词
Holomorphic tubular neighborhoods; Brjuno condition; Small divisor;
D O I
10.1007/s12220-024-01841-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be a smooth compact Riemann surface holomorphically embedded in a non-singular complex surface M with the unitary flat line bundle NC/M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{C/M}$$\end{document}. We give a sufficient condition for the existence on a holomorphic tubular neighborhood of C in M. Our sufficient condition is described by an arithmetical condition of NC/M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{C/M}$$\end{document} in Pic0(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Pic}<^>0(C)$$\end{document} which can be regarded as an analogue of the Brjuno condition for irrational numbers which appears in the theory of 1-variable complex dynamics.
引用
收藏
页数:19
相关论文
共 21 条
[1]  
Arnold VI., 1976, Funkcional Anal. i Prilozen, V104, P1
[2]  
Brjuno AD., 1972, Trans. Moscow Math. Soc, V26, P219
[3]  
Carleson L., 1993, Complex dynamics, DOI DOI 10.1007/978-1-4612-4364-9
[4]  
Donin IF., 1971, Mat. Sb.(N.S.), V86, P339
[5]  
Golse F., 1997, Srie, V1, P1047
[6]  
Gong X., 2022, Arnold Math. J, V8, P61, DOI DOI 10.1007/S40598-021-00192-W
[7]   UBER MODIFIKATIONEN UND EXZEPTIONELLE ANALYTISCHE MENGEN [J].
GRAUERT, H .
MATHEMATISCHE ANNALEN, 1962, 146 (04) :331-368
[8]  
Grauert H., 2004, Theory of Stein Spaces. Classics in Mathematics, Vxxii+255, DOI [10.1007/978-3-642-18921-0, DOI 10.1007/978-3-642-18921-0]
[9]  
Hashimoto Y., Kyoto J. Math
[10]  
Hormander L., 1965, Acta Math., V113, P89, DOI 10.1007/BF02391775