Negative refraction of light in an atomic medium

被引:0
作者
Ruks, L. [1 ,2 ,3 ]
Ballantine, K. E. [4 ]
Ruostekoski, J. [4 ]
机构
[1] NTT Corp, NTT Basic Res Labs, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 2430198, Japan
[2] NTT Corp, NTT Res Ctr Theoret Quantum Informat, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 2430198, Japan
[3] Okinawa Inst Sci & Technol Grad Univ, Quantum Syst Unit, Onna, Okinawa 9040495, Japan
[4] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England
基金
英国工程与自然科学研究理事会;
关键词
TIME-REVERSAL; FIELD THEORY; INDEX; PROPAGATION; METAMATERIALS;
D O I
10.1038/s41467-025-56250-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The quest to manipulate light propagation in ways not possible with natural media has driven the development of artificially structured metamaterials. One of the most striking effects is negative refraction, where the light beam deflects away from the boundary normal. However, due to material characteristics, the applications of this phenomenon, such as lensing that surpasses the diffraction limit, have been constrained. Here, we demonstrate negative refraction of light in an atomic medium without the use of artificial metamaterials, employing essentially exact simulations of light propagation. High transmission negative refraction is achieved in atomic arrays for different level structures and lattice constants, within the scope of currently realised experimental systems. We introduce an intuitive description of negative refraction based on collective excitation bands, whose transverse group velocities are antiparallel to the excitation quasi-momenta. We also illustrate how this phenomenon is robust to lattice imperfections and can be significantly enhanced through subradiance.
引用
收藏
页数:10
相关论文
共 72 条
[1]   Quantum Metamaterials with Magnetic Response at Optical Frequencies [J].
Alaee, Rasoul ;
Gurlek, Burak ;
Albooyeh, Mohammad ;
Martin-Cano, Diego ;
Sandoghdar, Vahid .
PHYSICAL REVIEW LETTERS, 2020, 125 (06)
[2]   Maximum Refractive Index of an Atomic Medium [J].
Andreoli, Francesco ;
Gullans, Michael J. ;
High, Alexander A. ;
Browaeys, Antoine ;
Chang, Darrick E. .
PHYSICAL REVIEW X, 2021, 11 (01)
[3]   Spectrum of Light in a Quantum Fluctuating Periodic Structure [J].
Antezza, Mauro ;
Castin, Yvan .
PHYSICAL REVIEW LETTERS, 2009, 103 (12)
[4]  
Bacot V, 2016, NAT PHYS, V12, P972, DOI [10.1038/NPHYS3810, 10.1038/nphys3810]
[5]   Optical Magnetism and Huygens' Surfaces in Arrays of Atoms Induced by Cooperative Responses [J].
Ballantine, K. E. ;
Ruostekoski, J. .
PHYSICAL REVIEW LETTERS, 2020, 125 (14)
[6]   Synthetic three-dimensional atomic structures assembled atom by atom [J].
Barredo, Daniel ;
Lienhard, Vincent ;
De Leseleuc, Sylvain ;
Lahaye, Thierry ;
Browaeys, Antoine .
NATURE, 2018, 561 (7721) :79-82
[7]  
Bekenstein R, 2020, NAT PHYS, V16, P676, DOI 10.1038/s41567-020-0845-5
[8]   Boundary conditions for interfaces of electromagnetic crystals and the generalized Ewald-Oseen extinction principle [J].
Belov, PA ;
Simovski, CR .
PHYSICAL REVIEW B, 2006, 73 (04)
[9]   Homogenization of electromagnetic crystals formed by uniaxial resonant scatterers [J].
Belov, PA ;
Simovski, CR .
PHYSICAL REVIEW E, 2005, 72 (02)
[10]   Quantum and nonlinear effects in light transmitted through planar atomic arrays [J].
Bettles, Robert J. ;
Lee, Mark D. ;
Gardiner, Simon A. ;
Ruostekoski, Janne .
COMMUNICATIONS PHYSICS, 2020, 3 (01)