Analysis of a Cahn-Hilliard model for a three-phase flow problem

被引:0
作者
Lakhmara, Nitu [1 ]
Mahato, Hari Shankar [1 ]
机构
[1] IIT Kharagpur, Dept Math, Paschim Medinipur 721302, WB, India
关键词
Bulk-free energy; Cahn-Hilliard free energy; Capillary force terms; Convection effects; Diffuse interface model; Existence of solution; Homogenization; Periodic unfolding; Porous media flow; Three-component models; Total spreading; Two-scale convergence; Stokes equation; Surface tension effects; FINITE-ELEMENT APPROXIMATION; DOUBLE-POROSITY MODEL; PHASE-FIELD MODELS; NAVIER-STOKES; SPINODAL DECOMPOSITION; NUMERICAL-ANALYSIS; POROUS-MEDIA; FREE-ENERGY; HOMOGENIZATION; EQUATION;
D O I
10.1007/s10665-024-10418-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, we present a rigorous model for analyzing the behavior of three immiscible components within incompressible viscous flows. By combining the Cahn-Hilliard free energy approach with the Stokes equation, we address both thermodynamic and hydrodynamic aspects of the fluid mixture. For a particular consistent selection of the bulk-free energy function, we enhance the Stokes equation to account for capillary forces and surface tension effects, and the Cahn-Hilliard equation with the convection effects. At the pore scale, we show the existence of weak solution in a bounded and sufficiently smooth domain Omega subset of Rd,d=2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}<^>d, d= 2, 3 $$\end{document}. Using two-scale convergence techniques, we derive an upscaled model that effectively characterizes the averaged behavior of the entire system.
引用
收藏
页数:48
相关论文
共 81 条
[1]  
Abels H, 2024, Arxiv, DOI arXiv:2308.11813
[2]   On an incompressible Navier-Stokes/Cahn-Hilliard system with degenerate mobility [J].
Abels, Helmut ;
Depner, Daniel ;
Garcke, Harald .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (06) :1175-1190
[3]   THERMODYNAMICALLY CONSISTENT, FRAME INDIFFERENT DIFFUSE INTERFACE MODELS FOR INCOMPRESSIBLE TWO-PHASE FLOWS WITH DIFFERENT DENSITIES [J].
Abels, Helmut ;
Garcke, Harald ;
Gruen, Guenther .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (03)
[4]   On a Diffuse Interface Model for Two-Phase Flows of Viscous, Incompressible Fluids with Matched Densities [J].
Abels, Helmut .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 194 (02) :463-506
[5]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[6]  
Allaire G., 1993, SCH HOMOGENIZATION, P4
[7]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[8]   DERIVATION OF THE DOUBLE POROSITY MODEL OF SINGLE-PHASE FLOW VIA HOMOGENIZATION THEORY [J].
ARBOGAST, T ;
DOUGLAS, J ;
HORNUNG, U .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (04) :823-836
[9]   Homogenization of evolutionary Stokes-Cahn-Hilliard equations for two-phase porous media flow [J].
Banas, L'ubomir ;
Mahato, Hari Shankar .
ASYMPTOTIC ANALYSIS, 2017, 105 (1-2) :77-95
[10]   NUMERICAL APPROXIMATION OF A NON-SMOOTH PHASE-FIELD MODEL FOR MULTICOMPONENT INCOMPRESSIBLE FLOW [J].
Banas, L'ubomir ;
Nurnberg, Robert .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (03) :1089-1117