Machine Learning-Based Prediction of New Pareto-Optimal Solutions From Pseudo-Weights

被引:3
作者
Suresh, Anirudh [1 ]
Deb, Kalyanmoy [2 ]
机构
[1] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
关键词
Task analysis; Optimization; Indexes; Machine learning; Decision making; Predictive models; Prediction algorithms; Machine learning (ML); multicriterion decision making; multiobjective optimization; NONDOMINATED SORTING APPROACH; MULTIOBJECTIVE OPTIMIZATION;
D O I
10.1109/TEVC.2023.3319494
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Owing to the stochasticity of evolutionary multiobjective optimization (EMO) algorithms and an application with a limited budget of solution evaluations, a perfectly converged and uniformly distributed Pareto-optimal (PO) front cannot be always guaranteed. Thus, a subsequent decision-making (DM) step or a curiosity on the part of the optimization researcher may demand solutions at regions not well-represented by the obtained PO front. In this study, we propose to train machine learning (ML) models to capture the mapping between unique identifiers of PO solutions-pseudo-weight vectors, computed from the existing PO front data, and their corresponding decision variable vectors. These learned models can then be used to predict PO decision variables for any new desired pseudo-weight vector. We evaluate the proposed approach with two different ML methods on a variety of multi- and many-objective test and real-world problems. This procedure can also be incorporated into an EMO algorithm to find a better-converged set of PO solutions, attempt to fill apparent gaps, and find more nondominated solutions at preferred regions of the PO front, facilitating a number of key advances for multiobjective optimization and DM tasks.
引用
收藏
页码:1351 / 1365
页数:15
相关论文
共 50 条
  • [21] Machine learning-based cache miss prediction
    Jelacic, Edin
    Seceleanu, Cristina
    Xiong, Ning
    Backeman, Peter
    Yaghoobi, Sharifeh
    Seceleanu, Tiberiu
    INTERNATIONAL JOURNAL ON SOFTWARE TOOLS FOR TECHNOLOGY TRANSFER, 2025, : 53 - 80
  • [22] A MACHINE LEARNING-BASED TOURIST PATH PREDICTION
    Zheng, Siwen
    Liu, Yu
    Ouyang, Zhenchao
    PROCEEDINGS OF 2016 4TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (IEEE CCIS 2016), 2016, : 38 - 42
  • [23] Machine Learning-Based Prediction of Air Quality
    Liang, Yun-Chia
    Maimury, Yona
    Chen, Angela Hsiang-Ling
    Juarez, Josue Rodolfo Cuevas
    APPLIED SCIENCES-BASEL, 2020, 10 (24): : 1 - 17
  • [24] Machine Learning-based Water Potability Prediction
    Alnaqeb, Reem
    Alrashdi, Fatema
    Alketbi, Khuloud
    Ismail, Heba
    2022 IEEE/ACS 19TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2022,
  • [25] Machine learning-based new approach to films review
    Jassim, Mustafa Abdalrassual
    Abd, Dhafar Hamed
    Omri, Mohamed Nazih
    SOCIAL NETWORK ANALYSIS AND MINING, 2023, 13 (01)
  • [26] Machine learning-based new approach to films review
    Mustafa Abdalrassual Jassim
    Dhafar Hamed Abd
    Mohamed Nazih Omri
    Social Network Analysis and Mining, 13
  • [27] Evaluating Autoselection Methods Used for Choosing Solutions from Pareto-Optimal Set: Does Nondominance Persist from Calibration to Validation Phase?
    Dumedah, Gift
    Berg, Aaron A.
    Wineberg, Mark
    JOURNAL OF HYDROLOGIC ENGINEERING, 2012, 17 (01) : 150 - 159
  • [28] Machine Learning-Based Prediction of Grain Size from Colored Microstructure
    Jung, Jun-Ho
    Kim, Hee-Soo
    KOREAN JOURNAL OF METALS AND MATERIALS, 2023, 61 (05): : 379 - 387
  • [29] Machine learning-based optimal design of groundwater pollution monitoring network
    Xiong, Yu
    Luo, Jiannan
    Liu, Xuan
    Liu, Yong
    Xin, Xin
    Wang, Shuangyu
    ENVIRONMENTAL RESEARCH, 2022, 211
  • [30] A machine learning-based framework for cost-optimal building retrofit
    Deb, Chirag
    Dai, Zhonghao
    Schlueter, Arno
    APPLIED ENERGY, 2021, 294