Advances in high-pressure materials discovery enabled by machine learning

被引:0
|
作者
Wang, Zhenyu [1 ,2 ]
Luo, Xiaoshan [1 ,3 ]
Wang, Qingchang [1 ]
Ge, Heng [1 ]
Gao, Pengyue [1 ]
Zhang, Wei [1 ]
Lv, Jian [1 ]
Wang, Yanchao [1 ]
机构
[1] Jilin Univ, Coll Phys, Key Lab Mat Simulat Methods & Software, Minist Educ, Changchun 130012, Peoples R China
[2] Jilin Univ, Int Ctr Future Sci, Changchun 130012, Peoples R China
[3] Jilin Univ, Coll Phys, State Key Lab Superhard Mat, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
SURFACE WALKING METHOD; CRYSTAL-STRUCTURE; GENERATION; LANTHANUM; HYDRIDE;
D O I
10.1063/5.0255385
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Crystal structure prediction (CSP) is a foundational computational technique for determining the atomic arrangements of crystalline materials, especially under high-pressure conditions. While CSP plays a critical role in materials science, traditional approaches often encounter significant challenges related to computational efficiency and scalability, particularly when applied to complex systems. Recent advances in machine learning (ML) have shown tremendous promise in addressing these limitations, enabling the rapid and accurate prediction of crystal structures across a wide range of chemical compositions and external conditions. This review provides a concise overview of recent progress in ML-assisted CSP methodologies, with a particular focus on machine learning potentials and generative models. By critically analyzing these advances, we highlight the transformative impact of ML in accelerating materials discovery, enhancing computational efficiency, and broadening the applicability of CSP. Additionally, we discuss emerging opportunities and challenges in this rapidly evolving field. (C) 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).https://doi.org/10.1063/5.0255385.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Accelerating Computational Materials Discovery with Machine Learning and Cloud High-Performance Computing: from Large-Scale Screening to Experimental Validation
    Chen, Chi
    Nguyen, Dan Thien
    Lee, Shannon J.
    Baker, Nathan A.
    Karakoti, Ajay S.
    Lauw, Linda
    Owen, Craig
    Mueller, Karl T.
    Bilodeau, Brian A.
    Murugesan, Vijayakumar
    Troyer, Matthias
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (29) : 20009 - 20018
  • [42] Remarkable Optoelectronic Characteristics of Synthesizable Square-Octagon Haeckelite Structures: Machine Learning Materials Discovery
    Alibagheri, Ehsan
    Ranjbar, Ahmad
    Khazaei, Mohammad
    Kuehne, Thomas D.
    Allaei, S. Mehdi Vaez
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (27)
  • [43] High-pressure phase transitions of clinoenstatite
    Lazarz, John D.
    Dera, Przemyslaw
    Hu, Yi
    Meng, Yue
    Bina, Craig R.
    Jacobsen, Steven D.
    AMERICAN MINERALOGIST, 2019, 104 (06) : 897 - 904
  • [44] High-pressure study of a natural cancrinite
    Lotti, Paolo
    Gatta, G. Diego
    Rotiroti, Nicola
    Camara, Fernando
    AMERICAN MINERALOGIST, 2012, 97 (5-6) : 872 - 882
  • [45] High-pressure dissociation of selenium and tellurium
    Li, Xin
    Huang, Xiaoli
    Wang, Xin
    Liu, Mingkun
    Wu, Gang
    Huang, Yanping
    He, Xin
    Li, Fangfei
    Zhou, Qiang
    Liu, Bingbing
    Cui, Tian
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (09) : 6116 - 6120
  • [46] Ultrafast dynamics under high-pressure
    Tu, Hongyu
    Pan, Lingyun
    Qi, Hongjian
    Zhang, Shuhao
    Li, Fangfei
    Sun, Chenglin
    Wang, Xin
    Cui, Tian
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2023, 35 (25)
  • [47] High-pressure behaviors of carbon nanotubes
    Zhao, Z. S.
    Zhou, X. -F.
    Hu, M.
    Yu, D. L.
    He, J. L.
    Wang, H. -T.
    Tian, Y. J.
    Xu, B.
    JOURNAL OF SUPERHARD MATERIALS, 2012, 34 (06) : 371 - 385
  • [48] High-Pressure Sorption of Hydrogen in Urea
    Safari, F.
    Tkacz, M.
    Katrusiak, A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (14) : 7756 - 7762
  • [49] Applying machine learning to balance performance and stability of high energy density materials
    Huang, Xiaona
    Li, Chongyang
    Tan, Kaiyuan
    Wen, Yushi
    Guo, Feng
    Li, Ming
    Huang, Yongli
    Sun, Chang Q.
    Gozin, Michael
    Zhang, Lei
    ISCIENCE, 2021, 24 (03)
  • [50] High-pressure phase transition of bismuth
    Ono, Shigeaki
    HIGH PRESSURE RESEARCH, 2018, 38 (04) : 414 - 421