共 50 条
Particle settling in a shear-thinning, viscoelastic fluid in the presence of wall effects
被引:0
|作者:
Whorton, Jodie
[1
]
Jones, Thomas J.
[1
]
Russell, James K.
[2
]
机构:
[1] Univ Lancaster, Lancaster Environm Ctr, Lancaster LA1 4YQ, England
[2] Univ British Columbia, Earth Ocean & Atmospher Sci, Vancouver, BC V6T 1Z4, Canada
来源:
SCIENTIFIC REPORTS
|
2025年
/
15卷
/
01期
基金:
英国科研创新办公室;
关键词:
NON-NEWTONIAN FLUIDS;
SOLID SPHERES;
SPHERICAL-PARTICLES;
DRAG COEFFICIENT;
FLOW;
MOTION;
VELOCITY;
SEDIMENTATION;
SIMULATION;
VISCOSITY;
D O I:
10.1038/s41598-025-87742-w
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
The settling of particles in fluids is a widespread phenomenon and commonly involves accounting for the effects of walls. Particle settling and wall effects are well understood for Newtonian fluids but the consequences of non-Newtonian fluid properties on particle settling are less well known. Here, we present the results from a set of experiments quantifying wall effects on particle settling within quiescent shear-thinning and viscoelastic (non-Newtonian) fluids for sphere-to-tube diameter ratios lambda <= 0.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \le 0.3$$\end{document}. We find that wall effects on particle settling are reduced in non-Newtonian fluids and settling velocities are poorly predicted by conventional wall-corrected Stokes' equations. We show that deviations in settling velocity are due to both the shear-thinning and viscoelastic properties of the fluid. Supported by our experimental dataset, we are able to show that calculating the shear-rate based on the particle diameter length-scale corresponds to an apparent viscosity that appropriately accounts for shear-thinning effects. A further correction factor for viscoelastic behaviour based on lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} and the Weissenberg number, Wi, is applied, and shows good agreement with all experimentally measured velocities. Together, we provide a quantitative method to accurately predict the terminal settling velocity of particles in shear-thinning, viscoelastic fluids up to sphere-to-tube diameter ratios of 0.3.
引用
收藏
页数:17
相关论文