On multiplicative conformable fractional integrals: theory and applications

被引:0
|
作者
Budak, Huseyin [1 ]
Ergun, Busra Betul [1 ]
机构
[1] Duzce Univ, Fac Sci & Art, Dept Math, Duzce, Turkiye
来源
BOUNDARY VALUE PROBLEMS | 2025年 / 2025卷 / 01期
关键词
Multiplicative calculus; Hermite-Hadamard inequality; Conformable fractional integrals; HERMITE-HADAMARD TYPE; DIFFERENTIABLE MAPPINGS; REAL NUMBERS; INEQUALITIES; MIDPOINT; CALCULUS;
D O I
10.1186/s13661-025-02026-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first introduce the multiplicative conformable left and right fractional integrals, followed by the derivation of key properties, such as integrability, boundedness, continuity, and the semi-group property, for the newly defined multiplicative conformable fractional integrals. Then, we establish the Hermite-Hadamard inequalities in three distinct senses for multiplicative conformable fractional integrals. Moreover, we present several corresponding midpoint and trapezoidal inequalities for the obtained Hermite-Hadamard inequalities including multiplicative conformable fractional integrals. By special cases, we present the relations between newly obtained inequalities for multiplicative conformable fractional integrals and existing results for multiplicative Riemann-Liouville fractional integrals and multiplicative integrals. Furthermore, we give some new Hermite-Hadamard type, trapezoid type and midpoint type inequalities or multiplicative Riemann-Liouville fractional integrals. Finally, we give several examples and 3D graphs to illustrate the main results.
引用
收藏
页数:66
相关论文
共 50 条
  • [21] On Newton-Cotes Formula-Type Inequalities for Multiplicative Generalized Convex Functions via Riemann-Liouville Fractional Integrals with Applications to Quadrature Formulas and Computational Analysis
    Mateen, Abdul
    Ozcan, Serap
    Zhang, Zhiyue
    Bin-Mohsin, Bandar
    FRACTAL AND FRACTIONAL, 2024, 8 (09)
  • [22] Chebyshev type inequalities via generalized fractional conformable integrals
    Nisar, Kottakkaran Sooppy
    Rahman, Gauhar
    Mehrez, Khaled
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [23] New Generalizations for Convex Functions via Conformable Fractional Integrals
    Ekinci, Alper
    Eroglu, Nazlican
    FILOMAT, 2019, 33 (14) : 4525 - 4534
  • [24] Two classes of conformable fractional Sturm-Liouville problems: Theory and applications
    Mortazaasl, Hamid
    Jodayree Akbarfam, Ali Asghar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (01) : 166 - 195
  • [25] On generalized Milne type inequalities for new conformable fractional integrals
    Celika, Baris
    Budakb, Huseyin
    Seta, Erhan
    FILOMAT, 2024, 38 (05) : 1807 - 1823
  • [26] Ostrowski type inequalities via new fractional conformable integrals
    Set, Erhan
    Akdemir, Ahmet Ocak
    Gozpinar, Abdurrahman
    Jarad, Fahd
    AIMS MATHEMATICS, 2019, 4 (06): : 1684 - 1697
  • [27] Chebyshev type inequalities via generalized fractional conformable integrals
    Kottakkaran Sooppy Nisar
    Gauhar Rahman
    Khaled Mehrez
    Journal of Inequalities and Applications, 2019
  • [28] New Hermite-Hadamard-type inequalities for fractional integrals and their applications
    Hwang, Shiow-Ru
    Tseng, Kuei-Lin
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) : 1211 - 1223
  • [29] HERMITE-HADAMARD INEQUALITIES OF CONFORMABLE FRACTIONAL INTEGRALS FOR STRONGLY H-CONVEX FUNCTIONS
    Xia, Shengze
    Xing, Yi
    Wan, Jianan
    Lu, Jiaying
    Ruan, Jianmiao
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (06): : 3610 - 3638
  • [30] HYBRID FRACTIONAL INTEGRAL INEQUALITIES IN MULTIPLICATIVE CALCULUS WITH APPLICATIONS
    Umar, Muhammad
    Butt, Saad ihsan
    Seol, Youngsoo
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2025, 33 (01)