On multiplicative conformable fractional integrals: theory and applications

被引:0
|
作者
Budak, Huseyin [1 ]
Ergun, Busra Betul [1 ]
机构
[1] Duzce Univ, Fac Sci & Art, Dept Math, Duzce, Turkiye
来源
BOUNDARY VALUE PROBLEMS | 2025年 / 2025卷 / 01期
关键词
Multiplicative calculus; Hermite-Hadamard inequality; Conformable fractional integrals; HERMITE-HADAMARD TYPE; DIFFERENTIABLE MAPPINGS; REAL NUMBERS; INEQUALITIES; MIDPOINT; CALCULUS;
D O I
10.1186/s13661-025-02026-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first introduce the multiplicative conformable left and right fractional integrals, followed by the derivation of key properties, such as integrability, boundedness, continuity, and the semi-group property, for the newly defined multiplicative conformable fractional integrals. Then, we establish the Hermite-Hadamard inequalities in three distinct senses for multiplicative conformable fractional integrals. Moreover, we present several corresponding midpoint and trapezoidal inequalities for the obtained Hermite-Hadamard inequalities including multiplicative conformable fractional integrals. By special cases, we present the relations between newly obtained inequalities for multiplicative conformable fractional integrals and existing results for multiplicative Riemann-Liouville fractional integrals and multiplicative integrals. Furthermore, we give some new Hermite-Hadamard type, trapezoid type and midpoint type inequalities or multiplicative Riemann-Liouville fractional integrals. Finally, we give several examples and 3D graphs to illustrate the main results.
引用
收藏
页数:66
相关论文
共 50 条
  • [1] Hermite-Hadamard type inequalities pertaining conformable fractional integrals and their applications
    Iqbal, Arshad
    Khan, Muhammad Adil
    Ullah, Sana
    Chu, Yu Ming
    Kashuri, Artion
    AIP ADVANCES, 2018, 8 (07)
  • [2] A new Approach of Generalized Fractional Integrals in Multiplicative Calculus and Related Hermite-Hadamard-Type Inequalities with Applications
    Ali, Muhammad Aamir
    Feckan, Michal
    Promsakon, Chanon
    Sitthiwirattham, Thanin
    MATHEMATICA SLOVACA, 2024, 74 (06) : 1445 - 1456
  • [3] Hermite-Hadamard type inequalities for conformable fractional integrals
    Khan, M. Adil
    Ali, T.
    Dragomir, S. S.
    Sarikaya, M. Z.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) : 1033 - 1048
  • [4] Multiplicative conformable fractional Dirac system
    Goktas, Sertac
    Kemaloglu, Hikmet
    Yilmaz, Emrah
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (03) : 973 - 990
  • [5] NEW EXTENSIONS VERSION OF HERMITE-HADAMARD TYPE INEQUALITIES BY MEANS OF CONFORMABLE FRACTIONAL INTEGRALS
    Bas, Umut
    Budak, Huseyin
    Kara, Hasan
    MISKOLC MATHEMATICAL NOTES, 2024, 25 (02) : 603 - 615
  • [6] ON HERMITE-HADAMARD TYPE INEQUALITIES FOR MULTIPLICATIVE FRACTIONAL INTEGRALS
    Budak, H.
    Ozcelik, K.
    MISKOLC MATHEMATICAL NOTES, 2020, 21 (01) : 91 - 99
  • [7] An extensive study on parameterized inequalities for conformable fractional integrals
    Hezenci, Fatih
    Budak, Huseyin
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (05)
  • [8] New inequalities for fractional integrals and their applications
    Hwang, Shiow-Ru
    Tseng, Kuei-Lin
    Hsu, Kai-Chen
    TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (03) : 471 - 486
  • [9] REMARKS ON INEQUALITIES WITH PARAMETER BY CONFORMABLE FRACTIONAL INTEGRALS
    Hezenci, Fatih
    Vivas-cortez, Miguel
    Budak, Huseyin
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024,
  • [10] CHEBYSHEV TYPE INEQUALITIES FOR CONFORMABLE FRACTIONAL INTEGRALS
    Set, Erhan
    Akdemir, Ahmet Ocak
    Mumcu, Ilker
    MISKOLC MATHEMATICAL NOTES, 2019, 20 (02) : 1227 - 1236