Global regularity in a nonlinear relaxed micromorphic continuum on Lipschitz domains

被引:0
|
作者
Knees, Dorothee [1 ]
Owczarek, Sebastian [2 ]
Neff, Patrizio [3 ]
机构
[1] Univ Kassel, Inst Math, Heinrich Plett Str 40, D-34132 Kassel, Germany
[2] Warsaw Univ Technol, Fac Math & Informat Sci, Ul Koszykowa 75, PL-00662 Warsaw, Poland
[3] Univ Duisburg Essen, Fak Math, Lehrstuhl Nichtlineare Anal & Modellierung, Campus Essen, Thea Leymann Str 9, D-45127 Essen, Germany
关键词
MAXWELL EQUATIONS; BOUNDARY;
D O I
10.1007/s00526-024-02915-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the global higher regularity properties of weak solutions for a linear elliptic system coupled with a nonlinear Maxwell-type system defined on Lipschitz domains. The regularity result is established using a modified finite difference approach. These adjusted finite differences involve inner variations in conjunction with a Piola-type transformation to preserve the curl-structure within the matrix Maxwell system. The proposed method is further applied to the linear relaxed micromorphic model. As a result, for a physically nonlinear version of the relaxed micromorphic model, we demonstrate that for arbitrary & varepsilon; > 0, the displacement vector u belongs to W-3/2-& varepsilon;,W-2(Omega), and the microdistortion tensor P belongs to W-1/2-& varepsilon;,W-2(Omega) while CurlP belongs to W-1/2-& varepsilon;,W-2(Omega).
引用
收藏
页数:22
相关论文
共 50 条