Global regularity in a nonlinear relaxed micromorphic continuum on Lipschitz domains

被引:0
|
作者
Knees, Dorothee [1 ]
Owczarek, Sebastian [2 ]
Neff, Patrizio [3 ]
机构
[1] Univ Kassel, Inst Math, Heinrich Plett Str 40, D-34132 Kassel, Germany
[2] Warsaw Univ Technol, Fac Math & Informat Sci, Ul Koszykowa 75, PL-00662 Warsaw, Poland
[3] Univ Duisburg Essen, Fak Math, Lehrstuhl Nichtlineare Anal & Modellierung, Campus Essen, Thea Leymann Str 9, D-45127 Essen, Germany
关键词
MAXWELL EQUATIONS; BOUNDARY;
D O I
10.1007/s00526-024-02915-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the global higher regularity properties of weak solutions for a linear elliptic system coupled with a nonlinear Maxwell-type system defined on Lipschitz domains. The regularity result is established using a modified finite difference approach. These adjusted finite differences involve inner variations in conjunction with a Piola-type transformation to preserve the curl-structure within the matrix Maxwell system. The proposed method is further applied to the linear relaxed micromorphic model. As a result, for a physically nonlinear version of the relaxed micromorphic model, we demonstrate that for arbitrary & varepsilon; > 0, the displacement vector u belongs to W-3/2-& varepsilon;,W-2(Omega), and the microdistortion tensor P belongs to W-1/2-& varepsilon;,W-2(Omega) while CurlP belongs to W-1/2-& varepsilon;,W-2(Omega).
引用
收藏
页数:22
相关论文
共 50 条
  • [1] A global higher regularity result for the static relaxed micromorphic model on smooth domains
    Knees, Dorothee
    Owczarek, Sebastian
    Neff, Patrizio
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [2] A unifying perspective: the relaxed linear micromorphic continuum
    Neff, Patrizio
    Ghiba, Ionel-Dumitrel
    Madeo, Angela
    Placidi, Luca
    Rosi, Giuseppe
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2014, 26 (05) : 639 - 681
  • [3] A unifying perspective: the relaxed linear micromorphic continuum
    Patrizio Neff
    Ionel-Dumitrel Ghiba
    Angela Madeo
    Luca Placidi
    Giuseppe Rosi
    Continuum Mechanics and Thermodynamics, 2014, 26 : 639 - 681
  • [4] Band gaps in the relaxed linear micromorphic continuum
    Madeo, Angela
    Neff, Patrizio
    Ghiba, Ionel-Dumitrel
    Placidi, Luca
    Rosi, Giuseppe
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2015, 95 (09): : 880 - 887
  • [5] Higher Regularity for Nonlinear Oblique Derivative Problems in Lipschitz Domains
    Lieberman, Gary M.
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2002, 1 (01) : 111 - 151
  • [6] Acceleration waves in the nonlinear micromorphic continuum
    Eremeyev, Victor A.
    Lebedev, Leonid P.
    Cloud, Michael J.
    MECHANICS RESEARCH COMMUNICATIONS, 2018, 93 : 70 - 74
  • [7] A note on local higher regularity in the dynamic linear relaxed micromorphic model
    Owczarek, Sebastian
    Ghiba, Ionel-Dumitrel
    Neff, Patrizio
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (18) : 13855 - 13865
  • [8] A local regularity result for the relaxed micromorphic model based on inner variations
    Knees, Dorothee
    Owczarek, Sebastian
    Neff, Patrizio
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 519 (02)
  • [9] Improved regularity in bumpy Lipschitz domains
    Kenig, Carlos
    Prange, Christophe
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 113 : 1 - 36
  • [10] Regularity of Standing Waves on Lipschitz Domains
    Taylor, Michael
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2013, 65 (03): : 702 - 720