Analysis of the Thermal Conditions in a Lithium-Ion Battery Pack at Reduced Heat Exchange Rate with the Environment

被引:0
|
作者
Kuznetsov, G. V. [1 ]
Kravchenko, E. V. [1 ]
机构
[1] Tomsk Polytech Univ, Tomsk, Russia
关键词
Li-ion; chemical current source; thermal runaway; air gap; fire preventing; PROPAGATION;
D O I
10.1134/S106378422470083X
中图分类号
O59 [应用物理学];
学科分类号
摘要
The use of chemical current sources (CCS) in large stationary electrical energy storage systems (EES) is impossible without solving the problem of their thermal runaway. The runaway may be due to exponential temperature rise in major operating components of the battery. One of the factors that increase electrode and electrolyte temperature in a battery is its lower heat exchange with the environment. This study performs a numerical analysis of the thermal conditions in a Li-ion battery pack at moderate values of external factors affecting the thermal runaway and typical discharge rates for this type of CCS. Thermal resistance between Li-ion battery and the battery pack case was found to greatly reduce heat exchange with the environment. The temperature difference across the battery pack in a practically significant range of variables was from 2 to 16 degrees C. At the same time, the characteristic temperature exceeded in a number of cases its regulated limit value, which created the risk of the battery's thermal runaway.
引用
收藏
页码:2527 / 2534
页数:8
相关论文
共 50 条
  • [1] Thermal model for square lithium-ion battery pack
    Zhu, C., 1600, SAE-China (34):
  • [2] Heat Transfer and Entropy Generation in a Lithium-Ion Battery Pack Against Battery Spacing and Discharge Rate
    Acharya, Swastik
    Khan, Rustam
    Agarwal, Praveen Kumar
    ASME JOURNAL OF HEAT AND MASS TRANSFER, 2023, 145 (11):
  • [3] Analysis of the Heat Generation Rate of Lithium-Ion Battery Using an Electrochemical Thermal Model
    Song, Minseok
    Hu, Yang
    Choe, Song-Yul
    Garrick, Taylor R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (12)
  • [4] Electrochemical and Thermal Analysis of Lithium-Ion Battery Pack With Different Cell Configurations
    Komurcu, Busra Namaldi
    Elden, Gulsah
    Celik, Muhammet
    Genc, Mustafa Serdar
    ENERGY STORAGE, 2024, 6 (08)
  • [5] Thermal Management of Lithium-ion Battery Pack with Liquid Cooling
    Saw, L. H.
    Tay, A. A. O.
    Zhang, L. Winston
    2015 31ST ANNUAL SEMICONDUCTOR THERMAL MEASUREMENT, MODELING & MANAGEMENT SYMPOSIUM (SEMI-THERM), 2015, : 298 - 302
  • [6] A Study on Thermal Equilibrium of Cylindrical Lithium-ion Battery Pack
    Cui X.
    Li D.
    Liu Z.
    Wei Z.
    Guo L.
    Dong H.
    Wang D.
    Qiche Gongcheng/Automotive Engineering, 2019, 41 (11): : 1273 - 1280
  • [7] Simulation of Onset and Propagation of Heat within Lithium-ion Battery Pack During Thermal Runaway
    Bhat, Chalukya
    Channegowda, Janamejaya
    George, Victor
    Chaudhari, Shilpa
    Naraharisetti, Kali
    2021 IEEE PES/IAS POWERAFRICA CONFERENCE, 2021, : 549 - 551
  • [8] Experimental investigation of thermal and strain management for lithium-ion battery pack in heat pipe cooling
    Feng, Liyuan
    Zhou, Shuo
    Li, Yancheng
    Wang, Yao
    Zhao, Qiang
    Luo, Chunhui
    Wang, Guixin
    Yan, Kangping
    JOURNAL OF ENERGY STORAGE, 2018, 16 : 84 - 92
  • [9] Numerical study of critical conditions for thermal runaway of lithium-ion battery pack during storage
    Zhao, Luyao
    Li, Wei
    Luo, Weiyi
    Zheng, Minxue
    Chen, Mingyi
    JOURNAL OF ENERGY STORAGE, 2024, 84
  • [10] Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling
    Saw, Lip Huat
    Ye, Yonghuang
    Tay, Andrew A. O.
    Chong, Wen Tong
    Kuan, Seng How
    Yew, Ming Chian
    APPLIED ENERGY, 2016, 177 : 783 - 792