Performance of Persicaria amphibia (L.) for Phytoremediation of Heavy Metals Contaminated Water

被引:0
作者
Cay, Seydahmet [1 ]
Yayla, Bahar [1 ]
Uyanik, Ahmet [2 ]
机构
[1] Giresun Univ, Fac Engn, Dept Environm Engn, TR-28200 Gure, Giresun, Turkiye
[2] Ondokuz Mayis Univ, Fac Sci, Dept Chem, TR-55139 Kurupelit, Samsun, Turkiye
关键词
Persicaria amphibia; Aquatic plant; Heavy metals; Phytoremediation; AQUATIC PLANTS; ACCUMULATION; CHROMIUM; SEDIMENT; REMOVAL; LAKE;
D O I
10.1007/s00128-024-03991-x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fast-paced global industrialization due to population growth poses negative water implications, such as pollution by heavy metals. Phytoremediation is deemed as an efficient and environmentally friendly alternative which utilizes different types of hyperaccumulator plants known as macrophytes for the removal of heavy metal pollutants from contaminated water. In this study, the removal of Cu(II), Ni(II), Pb(II), and Cd(II) heavy metal ions contaminated water was studied by using an aquatic plant, Persicaria amphibia (L.) collected from Ladik Lake, Samsun, Turkiye. The experiments were carried out hydroponically in the laboratory conditions. Synthetic heavy metals contaminated water (5, 10, 25, 50, 100 mg kg(- 1)), and domestic and industrial water were used in the experiments. The domestic and industrial water samples were taken from Aksu and Batlama streams in Giresun province. All physical plant changes were noted, and pH, conductivity, and dissolved oxygen levels of the hydroponic system were measured regularly during the experiments. In order to determine the effects of heavy metals on the plant, the chlorophyll (a, b and total) and carotenoid contents as well as the biomass of the plant, were measured. According to the phytoremediation experiments the amounts of accumulated heavy metals in plants were found as Cd(II) > Ni(II) > Cu(II) > Pb(II) in single systems and as Cd(II) > Ni(II) > Pb(II) > Cu(II) in competitive systems. The maximum amounts of heavy metals accumulated in plants were determined as 171 +/- 9 mg kg-1 for Cd(II), 143 +/- 7 mg kg-1 for Ni(II), 134 +/- 8 mg kg-1 for Cu(II) and 55 +/- 4 mg kg-1 for Pb(II). In addition, bioconcentration factor (BCF) values were calculated to make comparisons with the phytoextraction potential of the plant. This study emphasizes the importance of P. amphibia with high bioaccumulation potential for phytoremediation and suggests that it could be employed to restore water in heavy metal-contaminated areas.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Phytoremediation of contaminated soils by heavy metals - "Case Tomato"
    Sbartai, H.
    Sbartai, I.
    Djebar, M. R.
    Berrebbah, H.
    XIV INTERNATIONAL SYMPOSIUM ON PROCESSING TOMATO, 2017, 1159 : 95 - 100
  • [32] Phytoremediation potential of wild plants growing on soil contaminated with heavy metals
    Cudic, Vladica
    Stojiljkovic, Dragoslava
    Jovovic, Aleksandar
    ARHIV ZA HIGIJENU RADA I TOKSIKOLOGIJU-ARCHIVES OF INDUSTRIAL HYGIENE AND TOXICOLOGY, 2016, 67 (03): : 229 - 239
  • [33] Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review
    Cristaldi, Antonio
    Conti, Gea Oliveri
    Jho, Eun Hea
    Zuccarello, Pietro
    Grasso, Alfina
    Copat, Chiara
    Ferrante, Margherita
    ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2017, 8 : 309 - 326
  • [34] Phytoremediation of Heavy Metals in Contaminated Water and Soil Using Miscanthus sp Goedae-Uksae 1
    Bang, Jihye
    Kamala-Kannan, Seralathan
    Lee, Kui-Jae
    Cho, Min
    Kim, Chang-Hwan
    Kim, Young-Jin
    Bae, Jong-Hyang
    Kim, Kyong-Ho
    Myung, Hyun
    Oh, Byung-Taek
    INTERNATIONAL JOURNAL OF PHYTOREMEDIATION, 2015, 17 (06) : 515 - 520
  • [35] CADMIUM AND LEAD PHYTOREMEDIATION BY Arundo Donax L. FROM CONTAMINATED SOIL
    Ben Bouabdallah, Amina
    Aksas, Hamouche
    Louhab, Krim
    Bendou, Samira
    FRESENIUS ENVIRONMENTAL BULLETIN, 2022, 31 (02): : 1797 - 1804
  • [36] Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba L.
    Abdallah, Maha Ahmed Mohamed
    ENVIRONMENTAL TECHNOLOGY, 2012, 33 (14) : 1609 - 1614
  • [37] PHYTOREMEDIATION POTENTIAL OF MAIZE (ZEA MAYS L.) IN CO-CONTAMINATED SOILS WITH PENTACHLOROPHENOL AND CADMIUM
    Hechmi, Nejla
    Ben Aissa, Nadhira
    Abdennaceur, Hassen
    Jedidi, Naceur
    INTERNATIONAL JOURNAL OF PHYTOREMEDIATION, 2013, 15 (07) : 703 - 713
  • [38] PhytoremeDiation of Heavy Metals Contaminated Environments: Screening for Native Accumulator Plants in Zanjan-Iran
    Saba, G.
    Parizanganeh, A. H.
    Zamani, A.
    Saba, J.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH, 2015, 9 (01) : 309 - 316
  • [39] Synergistic effect of pyrene and heavy metals (Zn, Pb, and Cd) on phytoremediation potential of Medicago sativa L. (alfalfa) in multi-contaminated soil
    Jyoti Mathur
    Ritu Panwar
    Environmental Science and Pollution Research, 2024, 31 : 21012 - 21027
  • [40] Phytoremediation of Water and Soil Contaminated with Imidacloprid Pesticide by Plantago Major, L.
    Romeh, A. A.
    INTERNATIONAL JOURNAL OF PHYTOREMEDIATION, 2010, 12 (02) : 188 - 199