Elucidating key factors in regulating budgets of ozone and its precursors in atmospheric boundary layer

被引:3
作者
Song, Xin [1 ]
Li, Xiao-Bing [1 ]
Yuan, Bin [1 ]
He, Xianjun [1 ]
Chen, Yubin [1 ]
Wang, Sihang [1 ]
Huangfu, Yibo [1 ]
Peng, Yuwen [1 ]
Zhang, Chunsheng [2 ]
Liu, Aiming [2 ]
Yang, Honglong [2 ]
Liu, Chanfang [3 ]
Li, Jin [1 ]
Shao, Min [1 ]
机构
[1] Jinan Univ, Inst Environm & Climate Res, Coll Environm & Climate, Guangdong Hongkong Macau Joint Lab Collaborat Inno, Guangzhou, Guangdong, Peoples R China
[2] Shenzhen Natl Climate Observ, Shenzhen, Peoples R China
[3] Shenzhen Ecol & Environm Monitoring Ctr Guangdong, Shenzhen, Peoples R China
来源
NPJ CLIMATE AND ATMOSPHERIC SCIENCE | 2024年 / 7卷 / 01期
基金
中国国家自然科学基金;
关键词
VOLATILE ORGANIC-COMPOUNDS; UNMANNED AERIAL VEHICLE; RIVER DELTA REGION; NORTH CHINA PLAIN; VERTICAL-DISTRIBUTION; SURFACE OZONE; LOWER TROPOSPHERE; TETHERED BALLOON; MASS-SPECTROMETRY; AIR-POLLUTION;
D O I
10.1038/s41612-024-00818-8
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The vertical variations and key drivers of ozone and its precursors, namely NOx and VOCs, in the atmospheric boundary layer, have vital impacts on surface ozone budgets but are poorly understood so far. Using online gradient measurements from a 356 m tower, we obtained continuous vertical profiles of ozone and its precursors, which exhibited strong gradients throughout the day. In the daytime, the vertical gradients of ozone precursors are significantly regulated by reactions with OH radicals. At night, our observations confirmed more intense VOC reactions with NO3 radicals in the residual layer than in the boundary layer. Additionally, we found that residual layer entrainment could contribute to over half of the boundary-layer ozone enhancements in the morning periods. Our results underscore the importance of considering vertical changes of ozone and its precursors in the atmospheric boundary layer when developing future ozone mitigation strategies.
引用
收藏
页数:15
相关论文
共 91 条
  • [1] Mexico city aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) - Part 2: Analysis of the biomass burning contribution and the non-fossil carbon fraction
    Aiken, A. C.
    de Foy, B.
    Wiedinmyer, C.
    DeCarlo, P. F.
    Ulbrich, I. M.
    Wehrli, M. N.
    Szidat, S.
    Prevot, A. S. H.
    Noda, J.
    Wacker, L.
    Volkamer, R.
    Fortner, E.
    Wang, J.
    Laskin, A.
    Shutthanandan, V.
    Zheng, J.
    Zhang, R.
    Paredes-Miranda, G.
    Arnott, W. P.
    Molina, L. T.
    Sosa, G.
    Querol, X.
    Jimenez, J. L.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (12) : 5315 - 5341
  • [2] Evidence of increased mass fraction of NO2 within real-world NOx emissions of modern light vehicles -: derived from a reliable online measuring method
    Alvarez, Robert
    Weilenmann, Martin
    Favez, Jean-Yves
    [J]. ATMOSPHERIC ENVIRONMENT, 2008, 42 (19) : 4699 - 4707
  • [3] Formaldehyde in the Tropical Western Pacific: Chemical Sources and Sinks, Convective Transport, and Representation in CAM-Chem and the CCMI Models
    Anderson, Daniel C.
    Nicely, Julie M.
    Wolfe, Glenn M.
    Hanisco, Thomas F.
    Salawitch, Ross J.
    Canty, Timothy P.
    Dickerson, Russell R.
    Apel, Eric C.
    Baidar, Sunil
    Bannan, Thomas J.
    Blake, Nicola J.
    Chen, Dexian
    Dix, Barbara
    Fernandez, Rafael P.
    Hall, Samuel R.
    Hornbrook, Rebecca S.
    Huey, L. Gregory
    Josse, Beatrice
    Joeckel, Patrick
    Kinnison, Douglas E.
    Koenig, Theodore K.
    Le Breton, Michael
    Marecal, Virginie
    Morgenstern, Olaf
    Oman, Luke D.
    Pan, Laura L.
    Percival, Carl
    Plummer, David
    Revell, Laura E.
    Rozanov, Eugene
    Saiz-Lopez, Alfonso
    Stenke, Andrea
    Sudo, Kengo
    Tilmes, Simone
    Ullmann, Kirk
    Volkamer, Rainer
    Weinheimer, Andrew J.
    Zeng, Guang
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2017, 122 (20) : 11201 - 11226
  • [4] Coupling the vertical distribution of ozone in the atmospheric boundary layer
    Aneja, VP
    Mathur, R
    Arya, SP
    Li, YX
    Murray, GC
    Manuszak, TL
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (11) : 2324 - 2329
  • [5] Primary NO2 emissions and their role in the development of NO2 concentrations in a traffic environment
    Anttila, Pia
    Tuovinen, Juha-Pekka
    Niemi, Jarkko V.
    [J]. ATMOSPHERIC ENVIRONMENT, 2011, 45 (04) : 986 - 992
  • [6] Atmospheric degradation of volatile organic compounds
    Atkinson, R
    Arey, J
    [J]. CHEMICAL REVIEWS, 2003, 103 (12) : 4605 - 4638
  • [7] Measurement report: Aircraft observations of ozone, nitrogen oxides, and volatile organic compounds over Hebei Province, China
    Benish, Sarah E.
    He, Hao
    Ren, Xinrong
    Roberts, Sandra J.
    Salawitch, Ross J.
    Li, Zhanqing
    Wang, Fei
    Wang, Yuying
    Zhang, Fang
    Shao, Min
    Lu, Sihua
    Dickerson, Russell R.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (23) : 14523 - 14545
  • [8] Ozone process insights from field experiments - Part III: extent of reaction and ozone formation
    Blanchard, CL
    [J]. ATMOSPHERIC ENVIRONMENT, 2000, 34 (12-14) : 2035 - 2043
  • [9] Cavity enhanced spectroscopy for measurement of nitrogen oxides in the Anthropocene: results from the Seoul tower during MAPS 2015
    Brown, Steven S.
    An, Hyunjin
    Lee, Meehye
    Park, Jeong-Hoo
    Lee, Sang-Deok
    Fibiger, Dorothy L.
    McDuffie, Erin E.
    Dube, William P.
    Wagner, Nicholas L.
    Min, Kyung-Eun
    [J]. FARADAY DISCUSSIONS, 2017, 200 : 529 - 557
  • [10] Residual layer ozone, mixing, and the nocturnal jet in California's San Joaquin Valley
    Caputi, Dani J.
    Faloona, Ian
    Trousdell, Justin
    Smoot, Jeanelle
    Falk, Nicholas
    Conley, Stephen
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (07) : 4721 - 4740