In vivo HIV-1 nuclear condensates safeguard against cGAS and license reverse transcription

被引:5
作者
Ay, Selen [1 ]
Burlaud-Gaillard, Julien [2 ,3 ,4 ]
Gazi, Anastasia [5 ]
Tatirovsky, Yevgeniy [6 ,7 ]
Cuche, Celine [1 ]
Diana, Jean-Sebastien [1 ]
Scoca, Viviana [1 ]
Di Santo, James P. [6 ]
Roingeard, Philippe [2 ,3 ,4 ]
Mammano, Fabrizio [2 ,3 ]
Di Nunzio, Francesca [1 ]
机构
[1] Univ Paris Cite, Inst Pasteur, Dept Virol, Adv Mol Virol Unit, F-75015 Paris, France
[2] Univ Tours, Inserm U1259, MAVIVHe, Tours, France
[3] CHRU Tours, Tours, France
[4] Univ Tours, Plate Forme IBiSA Microscopie Elect, Tours, France
[5] Univ Paris Cite, Inst Pasteur, Ultrastruct BioImaging Facil, F-75015 Paris, France
[6] Univ Paris Cite, Inst Pasteur, Innate Immun Unit, Inserm U1223, Paris, France
[7] Univ Paris Est, Vaccine Res Inst, Inserm U955, Creteil, France
关键词
HIV-1; Cores; Post-nuclear Entry Steps; Innate Immunity; Nuclear Reverse Transcription; Biomolecular Condensates; LIQUID PHASE-SEPARATION; MOUSE MODEL; RESTRICTION; LOCALIZATION; PLATFORM; COMPLEX; CAPSIDS; IMPORT; SAMHD1; CELLS;
D O I
10.1038/s44318-024-00316-w
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Entry of viral capsids into the nucleus induces the formation of biomolecular condensates called HIV-1 membraneless organelles (HIV-1-MLOs). Several questions remain about their persistence, in vivo formation, composition, and function. Our study reveals that HIV-1-MLOs persisted for several weeks in infected cells, and their abundance correlated with viral infectivity. Using an appropriate animal model, we show that HIV-1-MLOs were formed in vivo during acute infection. To explore the viral structures present within these biomolecular condensates, we used a combination of double immunogold labeling, electron microscopy and tomography, and unveiled a diverse array of viral core structures. Our functional analyses showed that HIV-1-MLOs remained stable during treatment with a reverse transcriptase inhibitor, maintaining the virus in a dormant state. Drug withdrawal restored reverse transcription, promoting efficient virus replication akin to that observed in latently infected patients on antiretroviral therapy. However, when HIV-1 MLOs were deliberately disassembled by pharmacological treatment, we observed a complete loss of viral infectivity. Our findings show that HIV-1 MLOs shield the final reverse transcription product from host immune detection. In vitro infection studies have shown that HIV-1 entry into the nucleus triggers the formation of dynamic structures called HIV-1 membraneless organelles (HIV-1-MLOs). This study reveals their existence in vivo and highlights their multifaceted role in the post-nuclear viral entry steps.Viral nuclear condensates form in a humanized mouse model after HIV-1 infection.Viral nuclear condensates host distinct viral core structures for several days post-infection.Nuclear condensates are the main sites of nuclear reverse transcription of the HIV-1 genome.Viral nuclear condensates protect the newly synthesized viral DNA from recognition by cGAS. HIV-1 membraneless organelles are the main sites of viral RNA reverse transcription in the host cell nucleus.
引用
收藏
页码:166 / 199
页数:34
相关论文
共 74 条
[1]   Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates [J].
Alberti, Simon ;
Gladfelter, Amy ;
Mittag, Tanja .
CELL, 2019, 176 (03) :419-434
[2]   HIV-Induced CPSF6 Condensates [J].
Ay, Selen ;
Di Nunzio, Francesca .
JOURNAL OF MOLECULAR BIOLOGY, 2023, 435 (16)
[3]   A supramolecular assembly mediates lentiviral DNA integration [J].
Ballandras-Colas, Allison ;
Maskell, Daniel P. ;
Serrao, Erik ;
Locke, Julia ;
Swuec, Paolo ;
Jonsson, Stefan R. ;
Kotecha, Abhay ;
Cook, Nicola J. ;
Pye, Valerie E. ;
Taylor, Ian A. ;
Andresdottir, Valgerdur ;
Engelman, Alan N. ;
Costa, Alessandro ;
Cherepanov, Peter .
SCIENCE, 2017, 355 (6320) :93-95
[4]   HIV-1 nuclear import in macrophages is regulated by CPSF6-capsid interactions at the nuclear pore complex [J].
Bejarano, David Alejandro ;
Peng, Ke ;
Laketa, Vibor ;
Boerner, Kathleen ;
Jost, K. Laurence ;
Lucic, Bojana ;
Glass, Baerbel ;
Lusic, Marina ;
Mueller, Barbara ;
Kraeusslich, Hans-Georg .
ELIFE, 2019, 8
[5]   Localization of ASH1 mRNA particles in living yeast [J].
Bertrand, E ;
Chartrand, P ;
Schaefer, M ;
Shenoy, SM ;
Singer, RH ;
Long, RM .
MOLECULAR CELL, 1998, 2 (04) :437-445
[6]   Inhibition of HIV infection by structural proteins of the inner nuclear membrane is associated with reduced chromatin dynamics [J].
Bhargava, Anvita ;
Williart, Alice ;
Maurin, Mathieu ;
Davidson, Patricia M. ;
Jouve, Mabel ;
Piel, Matthieu ;
Lahaye, Xavier ;
Manel, Nicolas .
CELL REPORTS, 2021, 36 (13)
[7]   Structural basis of HIV-1 capsid recognition by PF74 and CPSF6 [J].
Bhattacharya, Akash ;
Alam, Steven L. ;
Fricke, Thomas ;
Zadrozny, Kaneil ;
Sedzicki, Jaroslaw ;
Taylor, Alexander B. ;
Demeler, Borries ;
Pornillos, Owen ;
Ganser-Pornillos, Barbie K. ;
Diaz-Griffero, Felipe ;
Ivanov, Dmitri N. ;
Yeager, Mark .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (52) :18625-18630
[8]   Remodeling of the Core Leads HIV-1 Preintegration Complex into the Nucleus of Human Lymphocytes [J].
Blanco-Rodriguez, Guillermo ;
Gazi, Anastasia ;
Monel, Blandine ;
Frabetti, Stella ;
Scoca, Viviana ;
Mueller, Florian ;
Schwartz, Olivier ;
Krijnse-Locker, Jacomine ;
Charneau, Pierre ;
Di Nunzio, Francesca .
JOURNAL OF VIROLOGY, 2020, 94 (11)
[9]   Nup153 Unlocks the Nuclear Pore Complex for HIV-1 Nuclear Translocation in Nondividing Cells [J].
Buffone, Cindy ;
Martinez-Lopez, Alicia ;
Fricke, Thomas ;
Opp, Silvana ;
Severgnini, Marco ;
Cifola, Ingrid ;
Petiti, Luca ;
Frabetti, Stella ;
Skorupka, Katarzyna ;
Zadrozny, Kaneil K. ;
Ganser-Pornillos, Barbie K. ;
Pornillos, Owen ;
Di Nunzio, Francesca ;
Diaz-Griffero, Felipe .
JOURNAL OF VIROLOGY, 2018, 92 (19)
[10]   HIV-1 uncoating requires long double-stranded reverse transcription products [J].
Burdick, Ryan C. ;
Morse, Michael ;
Rouzina, Ioulia ;
Williams, Mark C. ;
Hu, Wei-Shau ;
Pathak, Vinay K. .
SCIENCE ADVANCES, 2024, 10 (17)