Lower Bound for Large Local Transversal Fluctuations of Geodesics in Last Passage Percolation

被引:0
作者
Agarwal, Pranay [1 ,2 ]
机构
[1] Univ Toronto, Room 6290,40 St George St, Toronto, ON M5S 2E4, Canada
[2] Indian Inst Technol Kanpur, Dept Math, Kanpur 208016, UP, India
关键词
Last passage percolation; Geodesic; Fluctuation exponent; Kardar-Parisi-Zhang universality;
D O I
10.1007/s10959-024-01384-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For exactly solvable models of planar last passage percolation, it is known that geodesics of length n exhibit transversal fluctuations at scale n2/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n<^>{2/3}$$\end{document} and matching (up to exponents) upper and lower bounds for the tail probabilities are available. The local transversal fluctuations near the endpoints are expected to be much smaller; it is known that the transversal fluctuation up to distance r << n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \ll n$$\end{document} is typically of the order r2/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r<^>{2/3}$$\end{document} and the probability that the fluctuation is larger than tr2/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$tr<^>{2/3}$$\end{document} is at most Ce-ct3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ce<^>{-c{t}<^>3}$$\end{document}. In this note, we provide a short argument establishing a matching lower bound for this probability.
引用
收藏
页数:11
相关论文
共 13 条
[1]  
Balázs M, 2023, Arxiv, DOI arXiv:2308.07312
[2]  
Basu R, 2016, Arxiv, DOI arXiv:1408.3464
[3]   LOWER DEVIATIONS IN β-ENSEMBLES AND LAW OF ITERATED LOGARITHM IN LAST PASSAGE PERCOLATION [J].
Basu, Riddhipratim ;
Ganguly, Shirshendu ;
Hegde, Milind ;
Krishnapur, Manjunath .
ISRAEL JOURNAL OF MATHEMATICS, 2021, 242 (01) :291-324
[4]   Temporal Correlation in Last Passage Percolation with Flat Initial Condition via Brownian Comparison [J].
Basu, Riddhipratim ;
Ganguly, Shirshendu ;
Zhang, Lingfu .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 383 (03) :1805-1888
[5]   Coalescence of geodesics in exactly solvable models of last passage percolation [J].
Basu, Riddhipratim ;
Sarkar, Sourav ;
Sly, Allan .
JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (09)
[6]   Optimal tail exponents in general last passage percolation via bootstrapping & geodesic geometry [J].
Ganguly, Shirshendu ;
Hegde, Milind .
PROBABILITY THEORY AND RELATED FIELDS, 2023, 186 (1-2) :221-284
[7]   Modulus of continuity for polymer fluctuations and weight profiles in Poissonian last passage percolation [J].
Hammond, Alan ;
Sarkar, Sourav .
ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25
[8]   Transversal fluctuations for increasing subsequences on the plane [J].
Johansson, K .
PROBABILITY THEORY AND RELATED FIELDS, 2000, 116 (04) :445-456
[9]   Shape fluctuations and random matrices [J].
Johansson, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 209 (02) :437-476
[10]   Small deviations for beta ensembles [J].
Ledoux, Michel ;
Rider, Brian .
ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 :1319-1343