We present a weak-strong uniqueness result for the inhomogeneous Navier-Stokes equations in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>d$$\end{document} (d=2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2,3$$\end{document}) for bounded initial densities that are far from vacuum. Given a strong solution, i.e. a solution satisfying the equation as an identity in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}, and a Leray-Hopf weak solution, we establish that they coincide if the initial data agree. Our proof strategy is based on the relative energy method and new W-1,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{-1,p}$$\end{document}-type stability estimates for the density. A key point lies in proving that every Leray-Hopf weak solution originating from initial densities far from vacuum remains distant from vacuum at all times.
机构:
Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R ChinaAnhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
Dong, Bo-Qing
Zhang, Zhifei
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, LMAM, Beijing 100871, Peoples R China
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaAnhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
机构:
Inst Sci & Technol Austria IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
Univ Bonn, Hausdorff Ctr Math, Endenicher Allee 62, D-53115 Bonn, GermanyInst Sci & Technol Austria IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
Hensel, Sebastian
Marveggio, Alice
论文数: 0引用数: 0
h-index: 0
机构:
Inst Sci & Technol Austria IST Austria, Campus 1, A-3400 Klosterneuburg, AustriaInst Sci & Technol Austria IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Han, Pigong
Liu, Chenggang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Liu, Chenggang
Lei, Keke
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Lei, Keke
Wang, Xuewen
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
机构:
Changchun Normal Univ, Changchun, Peoples R China
Jilin Univ, Sch Math, Changchun, Peoples R ChinaChangchun Normal Univ, Changchun, Peoples R China
Liu, Yang
Zhou, Nan
论文数: 0引用数: 0
h-index: 0
机构:
Changchun Normal Univ, Changchun, Peoples R ChinaChangchun Normal Univ, Changchun, Peoples R China
Zhou, Nan
Guo, Renying
论文数: 0引用数: 0
h-index: 0
机构:
Changchun Normal Univ, Changchun, Peoples R ChinaChangchun Normal Univ, Changchun, Peoples R China