共 50 条
Relative energy method for weak-strong uniqueness of the inhomogeneous Navier-Stokes equations far from vacuum
被引:0
|作者:
Crin-Barat, Timothee
[3
]
Skondric, Stefan
[1
]
Violini, Alessandro
[2
]
机构:
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[2] Univ Basel, Dept Math Informat, Spiegelgasse 1, CH-4051 Basel, Switzerland
[3] Univ Paul Sabatier, Inst Math Toulouse, Route Narbonne 118, F-31062 Toulouse 9, France
关键词:
Inhomogeneous Navier-Stokes equations;
Weak-strong uniqueness;
Relative energy method;
Leray-Hopf weak solutions;
DEPENDENT INCOMPRESSIBLE FLUIDS;
DENSITY;
EXISTENCE;
D O I:
10.1007/s00028-024-01036-8
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We present a weak-strong uniqueness result for the inhomogeneous Navier-Stokes equations in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>d$$\end{document} (d=2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2,3$$\end{document}) for bounded initial densities that are far from vacuum. Given a strong solution, i.e. a solution satisfying the equation as an identity in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}, and a Leray-Hopf weak solution, we establish that they coincide if the initial data agree. Our proof strategy is based on the relative energy method and new W-1,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{-1,p}$$\end{document}-type stability estimates for the density. A key point lies in proving that every Leray-Hopf weak solution originating from initial densities far from vacuum remains distant from vacuum at all times.
引用
收藏
页数:36
相关论文